Progress in the Development of Flexible Devices Utilizing Protein Nanomaterials

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Nanomaterials vol. 15, no. 5 (2025), p. 367
Egile nagusia: Zhang, Chunhong
Beste egile batzuk: Zhang, Chenxi, Liu, Yongchun
Argitaratua:
MDPI AG
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3176352741
003 UK-CbPIL
022 |a 2079-4991 
024 7 |a 10.3390/nano15050367  |2 doi 
035 |a 3176352741 
045 2 |b d20250101  |b d20251231 
084 |a 231543  |2 nlm 
100 1 |a Zhang, Chunhong  |u Xi’an Key Laboratory of Advanced Control and Intelligent Process, School of Automation, Xi’an University of Posts & Telecommunications, Xi’an 710121, China 
245 1 |a Progress in the Development of Flexible Devices Utilizing Protein Nanomaterials 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Flexible devices are soft, lightweight, and portable, making them suitable for large-area applications. These features significantly expand the scope of electronic devices and demonstrate their unique value in various fields, including smart wearable devices, medical and health monitoring, human–computer interaction, and brain–computer interfaces. Protein materials, due to their unique molecular structure, biological properties, sustainability, self-assembly ability, and good biocompatibility, can be applied in electronic devices to significantly enhance the sensitivity, stability, mechanical strength, energy density, and conductivity of the devices. Protein-based flexible devices have become an important research direction in the fields of bioelectronics and smart wearables, providing new material support for the development of more environmentally friendly and reliable flexible electronics. Currently, many proteins, such as silk fibroin, collagen, ferritin, and so on, have been used in biosensors, memristors, energy storage devices, and power generation devices. Therefore, in this paper, we provide an overview of related research in the field of protein-based flexible devices, including the concept and characteristics of protein-based flexible devices, fabrication materials, fabrication processes, characterization, and evaluation, and we point out the future development direction of protein-based flexible devices. 
653 |a Physiology 
653 |a Flexible components 
653 |a Mechanical properties 
653 |a Humidity 
653 |a Synthetic products 
653 |a Energy storage 
653 |a Electronic devices 
653 |a Molecular structure 
653 |a Biosensors 
653 |a Wearable technology 
653 |a Biological properties 
653 |a Nanomaterials 
653 |a Nanotechnology 
653 |a Electronic equipment 
653 |a Research & development--R&D 
653 |a Fabrication 
653 |a Ferritin 
653 |a Proteins 
653 |a Polymers 
653 |a Silk fibroin 
653 |a Collagen 
653 |a Human-computer interface 
653 |a Information storage 
653 |a Carbon 
653 |a Sensors 
653 |a Self-assembly 
653 |a Portable equipment 
653 |a Biocompatibility 
653 |a Tissues 
700 1 |a Zhang, Chenxi  |u Xi’an Key Laboratory of Advanced Control and Intelligent Process, School of Automation, Xi’an University of Posts & Telecommunications, Xi’an 710121, China 
700 1 |a Liu, Yongchun  |u Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China 
773 0 |t Nanomaterials  |g vol. 15, no. 5 (2025), p. 367 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3176352741/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3176352741/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3176352741/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch