Bounded-Error LiDAR Compression for Bandwidth-Efficient Cloud-Edge In-Vehicle Data Transmission

Tallennettuna:
Bibliografiset tiedot
Julkaisussa:Electronics vol. 14, no. 5 (2025), p. 908
Päätekijä: Ray-I, Chang
Muut tekijät: Ting-Wei, Hsu, Yang, Chih, Yen-Ting, Chen
Julkaistu:
MDPI AG
Aiheet:
Linkit:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagit: Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!

MARC

LEADER 00000nab a2200000uu 4500
001 3176377926
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14050908  |2 doi 
035 |a 3176377926 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Ray-I, Chang 
245 1 |a Bounded-Error LiDAR Compression for Bandwidth-Efficient Cloud-Edge In-Vehicle Data Transmission 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Recent advances in autonomous driving have led to an increased use of LiDAR (Light Detection and Ranging) sensors for high-frequency 3D perceptions, resulting in massive data volumes that challenge in-vehicle networks, storage systems, and cloud-edge communications. To address this issue, we propose a bounded-error LiDAR compression framework that enforces a user-defined maximum coordinate deviation (e.g., 2 cm) in the real-world space. Our method combines multiple compression strategies in both axis-wise metric Axis or Euclidean metric L2 (namely, Error-Bounded Huffman Coding (EB-HC), Error-Bounded 3D Compression (EB-3D), and the extended Error-Bounded Huffman Coding with 3D Integration (EB-HC-3D)) with a lossless Huffman coding baseline. By quantizing and grouping point coordinates based on a strict threshold (either axis-wise or Euclidean), our method significantly reduces data size while preserving the geometric fidelity. Experiments on the KITTI dataset demonstrate that, under a 2 cm bounded-error, our single-bin compression reduces the data to 25–35% of their original size, while multi-bin processing can further compress the data to 15–25% of their original volume. An analysis of compression ratios, error metrics, and encoding/decoding speeds shows that our method achieves a substantial data reduction while keeping reconstruction errors within the specified limit. Moreover, runtime profiling indicates that our method is well-suited for deployment on in-vehicle edge devices, thereby enabling scalable cloud-edge cooperation. 
653 |a Huffman codes 
653 |a Storage systems 
653 |a Communication 
653 |a Bandwidths 
653 |a Sensors 
653 |a Encoding-Decoding 
653 |a Data transmission 
653 |a Error analysis 
653 |a Lidar 
653 |a Compression ratio 
653 |a Geometry 
653 |a In vehicle 
653 |a Entropy 
653 |a Data compression 
653 |a Vehicles 
700 1 |a Ting-Wei, Hsu 
700 1 |a Yang, Chih 
700 1 |a Yen-Ting, Chen 
773 0 |t Electronics  |g vol. 14, no. 5 (2025), p. 908 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3176377926/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3176377926/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3176377926/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch