Bounded-Error LiDAR Compression for Bandwidth-Efficient Cloud-Edge In-Vehicle Data Transmission
Tallennettuna:
| Julkaisussa: | Electronics vol. 14, no. 5 (2025), p. 908 |
|---|---|
| Päätekijä: | |
| Muut tekijät: | , , |
| Julkaistu: |
MDPI AG
|
| Aiheet: | |
| Linkit: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Tagit: |
Ei tageja, Lisää ensimmäinen tagi!
|
| Abstrakti: | Recent advances in autonomous driving have led to an increased use of LiDAR (Light Detection and Ranging) sensors for high-frequency 3D perceptions, resulting in massive data volumes that challenge in-vehicle networks, storage systems, and cloud-edge communications. To address this issue, we propose a bounded-error LiDAR compression framework that enforces a user-defined maximum coordinate deviation (e.g., 2 cm) in the real-world space. Our method combines multiple compression strategies in both axis-wise metric Axis or Euclidean metric L2 (namely, Error-Bounded Huffman Coding (EB-HC), Error-Bounded 3D Compression (EB-3D), and the extended Error-Bounded Huffman Coding with 3D Integration (EB-HC-3D)) with a lossless Huffman coding baseline. By quantizing and grouping point coordinates based on a strict threshold (either axis-wise or Euclidean), our method significantly reduces data size while preserving the geometric fidelity. Experiments on the KITTI dataset demonstrate that, under a 2 cm bounded-error, our single-bin compression reduces the data to 25–35% of their original size, while multi-bin processing can further compress the data to 15–25% of their original volume. An analysis of compression ratios, error metrics, and encoding/decoding speeds shows that our method achieves a substantial data reduction while keeping reconstruction errors within the specified limit. Moreover, runtime profiling indicates that our method is well-suited for deployment on in-vehicle edge devices, thereby enabling scalable cloud-edge cooperation. |
|---|---|
| ISSN: | 2079-9292 |
| DOI: | 10.3390/electronics14050908 |
| Lähde: | Advanced Technologies & Aerospace Database |