New adjusted missing value imputation in multiple regression with simple random sampling and rank set sampling methods

Guardat en:
Dades bibliogràfiques
Publicat a:PLoS One vol. 20, no. 3 (Mar 2025), p. e0316641
Autor principal: Sinsomboonthong, Juthaphorn
Altres autors: Sinsomboonthong, Saichon
Publicat:
Public Library of Science
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3178245701
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0316641  |2 doi 
035 |a 3178245701 
045 2 |b d20250301  |b d20250331 
084 |a 174835  |2 nlm 
100 1 |a Sinsomboonthong, Juthaphorn 
245 1 |a New adjusted missing value imputation in multiple regression with simple random sampling and rank set sampling methods 
260 |b Public Library of Science  |c Mar 2025 
513 |a Journal Article 
520 3 |a This research compared the efficiency of several adjusted missing value imputation methods in multiple regression analysis. The four imputation methods were the following: regression-ratio quartile1,3 (R-RQ1,3) imputation of Al-Omari, Jemain and Ibrahim; adjusted regression-chain ratio quartile1,3 (AR-CRQ1,3) imputation of Kadilar and Cinji; adjusted regression-multivariate ratio quatile1,3 (AR-MRQ1,3) imputation of Feng, Ni, and Zou; and adjusted regression-multivariate chain ratio quartile1,3 (AR-MCRQ1,3) imputation of Lu for each simple random sampling (SRS) and rank set sampling (RSS). The performance measures mean square error (MSE) and mean absolute percentage error (MAPE). The study showed that the AR-MRQ1 method with SRS provided the minimum mean square error for small error variance. However, the AR-MCRQ3 provided the minimum mean square error for a large error variance. Considering all error variance in mean absolute percentage error, the AR-MCRQ1 provided the minimum mean absolute percentage error. The AR-MRQ1 method with RSS provided the minimum mean square error for a small error variance. However, the AR-MCRQ3 provided the minimum mean square error for medium and large error variance. Regarding the mean absolute percentage error measure, the AR-MRQ1 provided the minimum mean absolute percentage error for a small error variance. However, the AR-MCRQ1 provided the minimum mean absolute percentage error for medium and large error variance. For both SRS and RSS, AR-MCRQ1 was the best method for missing value imputation in multiple regression analysis, followed by AR-MCRQ3. Moreover, the RSS estimators provided smaller MSE and MAPE than the SRS estimators. Therefore, the RSS estimators were more efficient than the SRS estimators. 
653 |a Multiple regression analysis 
653 |a Sample size 
653 |a Regression analysis 
653 |a Investigations 
653 |a Sampling methods 
653 |a Mean square values 
653 |a Statistical sampling 
653 |a Variance 
653 |a Multivariate analysis 
653 |a Variables 
653 |a Missing data 
653 |a Data analysis 
653 |a Methods 
653 |a Estimators 
653 |a Random sampling 
653 |a Efficiency 
653 |a Statistical analysis 
653 |a Social 
700 1 |a Sinsomboonthong, Saichon 
773 0 |t PLoS One  |g vol. 20, no. 3 (Mar 2025), p. e0316641 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3178245701/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3178245701/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3178245701/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch