Detection of Quality Deterioration of Packaged Raw Beef Based on Hyperspectral Technology

-д хадгалсан:
Номзүйн дэлгэрэнгүй
-д хэвлэсэн:Food Science & Nutrition vol. 13, no. 3 (Mar 1, 2025)
Үндсэн зохиолч: Wu, Cheng
Бусад зохиолчид: Feng, Yingjie, Cui, Jiarui, Yao, Zhang, Xu, Hailong, Wang, Songlei
Хэвлэсэн:
John Wiley & Sons, Inc.
Нөхцлүүд:
Онлайн хандалт:Citation/Abstract
Full Text
Full Text - PDF
Шошгууд: Шошго нэмэх
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!

MARC

LEADER 00000nab a2200000uu 4500
001 3180020204
003 UK-CbPIL
022 |a 2048-7177 
024 7 |a 10.1002/fsn3.70022  |2 doi 
035 |a 3180020204 
045 0 |b d20250301 
084 |a 233132  |2 nlm 
100 1 |a Wu, Cheng  |u School of Food Science and Engineering, Ningxia University, Yinchuan, China 
245 1 |a Detection of Quality Deterioration of Packaged Raw Beef Based on Hyperspectral Technology 
260 |b John Wiley & Sons, Inc.  |c Mar 1, 2025 
513 |a Journal Article 
520 3 |a ABSTRACT It is an important measure to ensure food quality and safety that real‐time monitoring of the key quality indicators of fresh meat after packaging in the process of storage and transportation. The feasibility of combining hyperspectral imaging (HSI) technology with chemometrics and deep learning to detect the quality deterioration of polyethylene (PE)‐packaged raw beef, especially for a key lipid oxidation indicator of malondialdehyde (MDA) content, was explored in this study. The feasibility of filtering to overcome the interference of packaging film on the spectral data was further investigated. Near‐infrared HSI (400–1000 nm) was used to collect spectral and spatial data of beef samples during short‐term storage. A least squares regression (PLSR) and echo‐neural network optimized by vulture optimization algorithms (BES‐ESN) models were developed by multivariate data processing methods. The results showed that the performance of models established by PE‐packed beef samples was usually inferior to that established by unpacked beef samples. The changes of MDA content in beef were visualized according to the optimal model. In addition, Gaussian filtering was applied to reduce the interference effect caused by the packaging film. The results have demonstrated that HSI combined with Gaussian filter preprocessing and multivariate data processing provided an efficient and reliable tool for detecting the freshness of beef in PE packaging. The best model had a coefficient of determination (R2P) of 0.8309 and a root mean squared error of prediction (RMSEP) of 0.2180, demonstrating the potential of hyperspectral techniques for real‐time monitoring of packaged raw meat quality. The findings can provide some references for the meat industry to develop advanced non‐invasive quality assurance systems in the meat industry. 
653 |a Beef 
653 |a Software 
653 |a Food safety 
653 |a Acids 
653 |a Data processing 
653 |a Quality assurance 
653 |a Meat processing industry 
653 |a Packaging 
653 |a Least squares method 
653 |a Food quality 
653 |a Oxidation 
653 |a Chromatography 
653 |a Lipid peroxidation 
653 |a Feasibility studies 
653 |a Freshness 
653 |a Monitoring 
653 |a Machine learning 
653 |a Deep learning 
653 |a Food packaging 
653 |a Cameras 
653 |a Spatial data 
653 |a Neural networks 
653 |a Meat industry 
653 |a Experiments 
653 |a Optimization 
653 |a Multivariate analysis 
653 |a Meat 
653 |a Algorithms 
653 |a Lipids 
653 |a Meat quality 
653 |a Filtration 
653 |a Hyperspectral imaging 
653 |a Economic 
700 1 |a Feng, Yingjie  |u School of Food Science and Engineering, Ningxia University, Yinchuan, China 
700 1 |a Cui, Jiarui  |u School of Food Science and Engineering, Ningxia University, Yinchuan, China 
700 1 |a Yao, Zhang  |u School of Food Science and Engineering, Ningxia University, Yinchuan, China 
700 1 |a Xu, Hailong  |u School of Food Science and Engineering, Ningxia University, Yinchuan, China 
700 1 |a Wang, Songlei  |u School of Food Science and Engineering, Ningxia University, Yinchuan, China 
773 0 |t Food Science & Nutrition  |g vol. 13, no. 3 (Mar 1, 2025) 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3180020204/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3180020204/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3180020204/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch