A Hybrid Gradient Boosting and Neural Network Model for Predicting Urban Happiness: Integrating Ensemble Learning with Deep Representation for Enhanced Accuracy

Guardat en:
Dades bibliogràfiques
Publicat a:Machine Learning and Knowledge Extraction vol. 7, no. 1 (2025), p. 4
Autor principal: Gregorius Airlangga
Altres autors: Liu, Alan
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3181641154
003 UK-CbPIL
022 |a 2504-4990 
024 7 |a 10.3390/make7010004  |2 doi 
035 |a 3181641154 
045 2 |b d20250101  |b d20250331 
100 1 |a Gregorius Airlangga  |u Department of Information Systems, Atma Jaya Catholic University of Indonesia, Jakarta 12930, Indonesia; <email>gregorius.airlangga@atmajaya.ac.id</email> 
245 1 |a A Hybrid Gradient Boosting and Neural Network Model for Predicting Urban Happiness: Integrating Ensemble Learning with Deep Representation for Enhanced Accuracy 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Urban happiness prediction presents a complex challenge, due to the nonlinear and multifaceted relationships among socio-economic, environmental, and infrastructural factors. This study introduces an advanced hybrid model combining a gradient boosting machine (GBM) and neural network (NN) to address these complexities. Unlike traditional approaches, this hybrid leverages a GBM to handle structured data features and an NN to extract deeper nonlinear relationships. The model was evaluated against various baseline machine learning and deep learning models, including a random forest, CNN, LSTM, CatBoost, and TabNet, using metrics such as RMSE, MAE, R2, and MAPE. The GBM + NN hybrid achieved superior performance, with the lowest RMSE of 0.3332, an R2 of 0.9673, and an MAPE of 7.0082%. The model also revealed significant insights into urban indicators, such as a 10% improvement in air quality correlating to a 5% increase in happiness. These findings underscore the potential of hybrid models in urban analytics, offering both predictive accuracy and actionable insights for urban planners. 
653 |a Accuracy 
653 |a Machine learning 
653 |a Research methodology 
653 |a Happiness 
653 |a Cost of living 
653 |a Deep learning 
653 |a Neural networks 
653 |a Structured data 
653 |a Well being 
653 |a Air quality 
653 |a Outdoor air quality 
653 |a Econometrics 
653 |a Decision trees 
653 |a Ensemble learning 
700 1 |a Liu, Alan  |u Department of Electrical Engineering, National Chung Cheng University, Chiayi 621301, Taiwan 
773 0 |t Machine Learning and Knowledge Extraction  |g vol. 7, no. 1 (2025), p. 4 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3181641154/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3181641154/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3181641154/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch