Mixed Student’s T-Distribution Regression Soft Measurement Model and Its Application Based on VI and MCMC

Guardado en:
Detalles Bibliográficos
Publicado en:Processes vol. 13, no. 3 (2025), p. 861
Autor principal: Li, Qirui
Otros Autores: Li, Cuixian, Peng, Zhiping, Delong Cui, He, Jieguang
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:The conventional diagnostic techniques for ethylene cracker furnace tube coking rely on manual expertise, offline analysis and on-site inspection. However, these methods have inherent limitations, including prolonged inspection times, low accuracy and poor real-time performance. This makes it challenging to meet the requirements of chemical production. The necessity for high efficiency, high reliability and high safety, coupled with the inherent complexity of the production process, results in data that is characterized by multimodal, nonlinear, non-Gaussian and strong noise. This renders the traditional data processing and analysis methods ineffective. In order to address these issues, this paper puts forth a novel soft measurement approach, namely the ‘Mixed Student’s t-distribution regression soft measurement model based on Variational Inference (VI) and Markov Chain Monte Carlo (MCMC)’. The initial variational distribution is selected during the initialization step of VI. Subsequently, VI is employed to iteratively refine the distribution in order to more closely approximate the true posterior distribution. Subsequently, the outcomes of VI are employed to initiate the MCMC, which facilitates the placement of the iterative starting point of the MCMC in a region that more closely approximates the true posterior distribution. This approach allows the convergence process of MCMC to be accelerated, thereby enabling a more rapid approach to the true posterior distribution. The model integrates the efficiency of VI with the accuracy of the MCMC, thereby enhancing the precision of the posterior distribution approximation while preserving computational efficiency. The experimental results demonstrate that the model exhibits enhanced accuracy and robustness in the diagnosis of ethylene cracker tube coking compared to the conventional Partial Least Squares Regression (PLSR), Gaussian Process Regression (GPR), Gaussian Mixture Regression (GMR), Bayesian Student’s T-Distribution Mixture Regression (STMR) and Semi-supervised Bayesian T-Distribution Mixture Regression (SsSMM). This method provides a scientific basis for optimizing and maintaining the ethylene cracker, enhancing its production efficiency and reliability, and effectively addressing the multimodal, non-Gaussian distribution and uncertainty of the coking data of the ethylene cracker furnace tube.
ISSN:2227-9717
DOI:10.3390/pr13030861
Fuente:Materials Science Database