Mixed Student’s T-Distribution Regression Soft Measurement Model and Its Application Based on VI and MCMC

Bewaard in:
Bibliografische gegevens
Gepubliceerd in:Processes vol. 13, no. 3 (2025), p. 861
Hoofdauteur: Li, Qirui
Andere auteurs: Li, Cuixian, Peng, Zhiping, Delong Cui, He, Jieguang
Gepubliceerd in:
MDPI AG
Onderwerpen:
Online toegang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Voeg label toe
Geen labels, Wees de eerste die dit record labelt!

MARC

LEADER 00000nab a2200000uu 4500
001 3181727784
003 UK-CbPIL
022 |a 2227-9717 
024 7 |a 10.3390/pr13030861  |2 doi 
035 |a 3181727784 
045 2 |b d20250101  |b d20251231 
084 |a 231553  |2 nlm 
100 1 |a Li, Qirui  |u Computer College, Guangdong University of Petrochemical Technology, Maoming 525000, China; <email>liqirui@gdupt.edu.cn</email> (Q.L.); <email>lcuix1819@gdupt.edu.cn</email> (C.L.); <email>jieguang@gdupt.edu.cn</email> (J.H.) 
245 1 |a Mixed Student’s T-Distribution Regression Soft Measurement Model and Its Application Based on VI and MCMC 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The conventional diagnostic techniques for ethylene cracker furnace tube coking rely on manual expertise, offline analysis and on-site inspection. However, these methods have inherent limitations, including prolonged inspection times, low accuracy and poor real-time performance. This makes it challenging to meet the requirements of chemical production. The necessity for high efficiency, high reliability and high safety, coupled with the inherent complexity of the production process, results in data that is characterized by multimodal, nonlinear, non-Gaussian and strong noise. This renders the traditional data processing and analysis methods ineffective. In order to address these issues, this paper puts forth a novel soft measurement approach, namely the ‘Mixed Student’s t-distribution regression soft measurement model based on Variational Inference (VI) and Markov Chain Monte Carlo (MCMC)’. The initial variational distribution is selected during the initialization step of VI. Subsequently, VI is employed to iteratively refine the distribution in order to more closely approximate the true posterior distribution. Subsequently, the outcomes of VI are employed to initiate the MCMC, which facilitates the placement of the iterative starting point of the MCMC in a region that more closely approximates the true posterior distribution. This approach allows the convergence process of MCMC to be accelerated, thereby enabling a more rapid approach to the true posterior distribution. The model integrates the efficiency of VI with the accuracy of the MCMC, thereby enhancing the precision of the posterior distribution approximation while preserving computational efficiency. The experimental results demonstrate that the model exhibits enhanced accuracy and robustness in the diagnosis of ethylene cracker tube coking compared to the conventional Partial Least Squares Regression (PLSR), Gaussian Process Regression (GPR), Gaussian Mixture Regression (GMR), Bayesian Student’s T-Distribution Mixture Regression (STMR) and Semi-supervised Bayesian T-Distribution Mixture Regression (SsSMM). This method provides a scientific basis for optimizing and maintaining the ethylene cracker, enhancing its production efficiency and reliability, and effectively addressing the multimodal, non-Gaussian distribution and uncertainty of the coking data of the ethylene cracker furnace tube. 
653 |a Accuracy 
653 |a Data processing 
653 |a Markov chains 
653 |a Regression models 
653 |a Ethylene 
653 |a Normal distribution 
653 |a Efficiency 
653 |a Least squares method 
653 |a Measurement techniques 
653 |a Statistical analysis 
653 |a Chemical industry 
653 |a Machine learning 
653 |a Bayesian analysis 
653 |a Inspection 
653 |a Artificial intelligence 
653 |a Carbon 
653 |a Temperature 
653 |a Reliability 
653 |a Process controls 
653 |a Variables 
653 |a Gaussian process 
653 |a Methods 
653 |a Algorithms 
653 |a Mixtures 
653 |a Real time 
653 |a Coking 
653 |a Probability distribution 
653 |a Parameter estimation 
700 1 |a Li, Cuixian  |u Computer College, Guangdong University of Petrochemical Technology, Maoming 525000, China; <email>liqirui@gdupt.edu.cn</email> (Q.L.); <email>lcuix1819@gdupt.edu.cn</email> (C.L.); <email>jieguang@gdupt.edu.cn</email> (J.H.) 
700 1 |a Peng, Zhiping  |u College of Information Engineering, Jiangmen Polytechnic College, Jiangmen 529090, China; <email>zhipingpeng@gdupt.edu.cn</email> 
700 1 |a Delong Cui  |u Computer College, Guangdong University of Petrochemical Technology, Maoming 525000, China; <email>liqirui@gdupt.edu.cn</email> (Q.L.); <email>lcuix1819@gdupt.edu.cn</email> (C.L.); <email>jieguang@gdupt.edu.cn</email> (J.H.) 
700 1 |a He, Jieguang  |u Computer College, Guangdong University of Petrochemical Technology, Maoming 525000, China; <email>liqirui@gdupt.edu.cn</email> (Q.L.); <email>lcuix1819@gdupt.edu.cn</email> (C.L.); <email>jieguang@gdupt.edu.cn</email> (J.H.) 
773 0 |t Processes  |g vol. 13, no. 3 (2025), p. 861 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3181727784/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3181727784/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3181727784/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch