The Computational Efficiency in Mathematical Algorithms

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:International Journal of Combinatorial Optimization Problems and Informatics vol. 16, no. 2 (2025), p. 191
Egile nagusia: Eric León Olivares
Beste egile batzuk: Márquez Strociak, Luis Carlos, Mayra Lorena González Mosqueda, Karla Martínez Tapia, Salvador Martínez Pagola, Eric Simancas Acevedo
Argitaratua:
International Journal of Combinatorial Optimization Problems & Informatics
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
Deskribapena
Laburpena:The implementation of mathematical algorithms plays a fundamental role in computational efficiency. Sequential programming, which processes instructions in a linear manner, often struggles with large data volumes due to its inherent limitations. In contrast, parallel programming distributes tasks across multiple cores, significantly reducing processing times and improving overall performance. This paper presents a comparative analysis of both approaches and their relevance in Systems Engineering, where computational optimization is critical. To this end, we implement and evaluate the Sobel algorithm—commonly used for edge detection in images—in both sequential and parallel modes. The implementation is carried out in Python, leveraging the NumPy, OpenCV, and Multiprocessing libraries. This study analyzes the conditions under which parallelization enhances performance and identifies scenarios where process overhead may negate its benefits, thus establishing fundamental criteria for applying these techniques to solve mathematical problems in engineering. The source code is available on GitHub at: [GitHub Repository].
ISSN:2007-1558
DOI:10.61467/2007.1558.2025.v16i2.1081
Baliabidea:Advanced Technologies & Aerospace Database