Detection of Potentially Anomalous Cosmic Particle Tracks Acquired with CMOS Sensors: Validation of Rough k–Means Clustering with PCA Feature Extraction

Salvato in:
Dettagli Bibliografici
Pubblicato in:International Journal of Applied Mathematics and Computer Science vol. 35, no. 1 (2025), p. 7
Autore principale: Hachaj, Tomasz
Altri autori: Piekarczyk, Marcin, Wąs, Jarosław
Pubblicazione:
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
Soggetti:
Accesso online:Citation/Abstract
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3184405870
003 UK-CbPIL
022 |a 1641-876X 
022 |a 2083-8492 
022 |a 0867-857X 
024 7 |a 10.61822/amcs-2025-0001  |2 doi 
035 |a 3184405870 
045 2 |b d20250101  |b d20250331 
084 |a 190536  |2 nlm 
100 1 |a Hachaj, Tomasz  |u Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Krakow Al. Mickiewicza 30, 30-059 Krakow, Poland 
245 1 |a Detection of Potentially Anomalous Cosmic Particle Tracks Acquired with CMOS Sensors: Validation of Rough <i>k</i>–Means Clustering with PCA Feature Extraction 
260 |b De Gruyter Brill Sp. z o.o., Paradigm Publishing Services  |c 2025 
513 |a Journal Article 
520 3 |a We present a method capable of detecting potentially anomalous cosmic particle tracks acquired with complementary metal-oxide-semiconductor (CMOS) sensors. We apply a principal components analysis-based feature extraction method and rough k-means clustering for outlier detection. We evaluated our approach on more than 104 images acquired by the Cosmic Ray Extremely Distributed Observatory (CREDO). The method presented in this work proved to be an effective solution. The analysis of the behavior of the rough k-means clustering-based algorithm presented here and the method of selecting its parameters showed that the algorithm performs as expected and demonstrates efficiency, stability, and repeatability of results for the test data set. The results included in this work are very relevant to the international CREDO project and the broader problem of anomaly analysis in image data sets. We plan to deploy the presented methodology in the image processing pipeline of the large data set we are working on in the CREDO project. The results can be reproduced using our source code, which is published in an open repository. 
653 |a Particle tracking 
653 |a Feature extraction 
653 |a Outliers (statistics) 
653 |a Data analysis 
653 |a Datasets 
653 |a Source code 
653 |a Cluster analysis 
653 |a Principal components analysis 
653 |a Sensors 
653 |a Clustering 
653 |a Cosmic rays 
653 |a CMOS 
653 |a Algorithms 
653 |a Image acquisition 
653 |a Image processing 
653 |a Vector quantization 
653 |a Image processing systems 
700 1 |a Piekarczyk, Marcin  |u Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Krakow Al. Mickiewicza 30, 30-059 Krakow, Poland 
700 1 |a Wąs, Jarosław  |u Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Krakow Al. Mickiewicza 30, 30-059 Krakow, Poland 
773 0 |t International Journal of Applied Mathematics and Computer Science  |g vol. 35, no. 1 (2025), p. 7 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3184405870/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3184405870/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch