Detection of Potentially Anomalous Cosmic Particle Tracks Acquired with CMOS Sensors: Validation of Rough k–Means Clustering with PCA Feature Extraction

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:International Journal of Applied Mathematics and Computer Science vol. 35, no. 1 (2025), p. 7
المؤلف الرئيسي: Hachaj, Tomasz
مؤلفون آخرون: Piekarczyk, Marcin, Wąs, Jarosław
منشور في:
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
مستخلص:We present a method capable of detecting potentially anomalous cosmic particle tracks acquired with complementary metal-oxide-semiconductor (CMOS) sensors. We apply a principal components analysis-based feature extraction method and rough k-means clustering for outlier detection. We evaluated our approach on more than 104 images acquired by the Cosmic Ray Extremely Distributed Observatory (CREDO). The method presented in this work proved to be an effective solution. The analysis of the behavior of the rough k-means clustering-based algorithm presented here and the method of selecting its parameters showed that the algorithm performs as expected and demonstrates efficiency, stability, and repeatability of results for the test data set. The results included in this work are very relevant to the international CREDO project and the broader problem of anomaly analysis in image data sets. We plan to deploy the presented methodology in the image processing pipeline of the large data set we are working on in the CREDO project. The results can be reproduced using our source code, which is published in an open repository.
تدمد:1641-876X
2083-8492
0867-857X
DOI:10.61822/amcs-2025-0001
المصدر:Advanced Technologies & Aerospace Database