Malicious iOS Apps Detection Through Multi-Criteria Decision-Making Approach

Guardado en:
Detalles Bibliográficos
Publicado en:Informatica vol. 49, no. 1 (Mar 2025), p. 207
Autor principal: Bhatt, Arpita Jadhav
Otros Autores: Sardana, Neetu
Publicado:
Slovenian Society Informatika / Slovensko drustvo Informatika
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:In today's era, smartphones are used in daily lives because they are ubiquitous and can be customized by installing third-party apps. As a result, the menaces because of these apps, which are potentially risky for user's privacy, have increased. Information on smartphones is perhaps, more personal than compared to data stored on desktops or computers, making it an easy target for intruders. After Android, the most prevalently used mobile operating system is Apple's iOS. Both Android and iOS follow permission-based access control to protect user's privacy. However, the users are unaware whether the app is breaching the user's privacy. To combat this problem, in the paper we propose a hybrid approach to detect malicious iOS apps based on its permissions. In the first phase, weights have been assigned to app permissions using multi-criteria decision-making (MCDM) approach namely Analytic Hierarchy Process (AHP), and in the second phase machine learning & ensemble learning techniques have been employed to train the classifiers for detecting malicious apps. To test the efficacy of the proposed method dataset comprising 1150 apps from 12 app categories has been used. The results demonstrate the proposed approach improves the efficacy of detecting malicious iOS apps for majority of categories.
ISSN:0350-5596
1854-3871
DOI:10.31449/inf.v49il.5664
Fuente:Advanced Technologies & Aerospace Database