Malicious iOS Apps Detection Through Multi-Criteria Decision-Making Approach

Guardado en:
Bibliografiske detaljer
Udgivet i:Informatica vol. 49, no. 1 (Mar 2025), p. 207
Hovedforfatter: Bhatt, Arpita Jadhav
Andre forfattere: Sardana, Neetu
Udgivet:
Slovenian Society Informatika / Slovensko drustvo Informatika
Fag:
Online adgang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3185278983
003 UK-CbPIL
022 |a 0350-5596 
022 |a 1854-3871 
024 7 |a 10.31449/inf.v49il.5664  |2 doi 
035 |a 3185278983 
045 2 |b d20250301  |b d20250331 
084 |a 179436  |2 nlm 
100 1 |a Bhatt, Arpita Jadhav  |u Department of Computer Science & Engineering and Information Technology, Jaypee Institute of Information Technology, India 
245 1 |a Malicious iOS Apps Detection Through Multi-Criteria Decision-Making Approach 
260 |b Slovenian Society Informatika / Slovensko drustvo Informatika  |c Mar 2025 
513 |a Journal Article 
520 3 |a In today's era, smartphones are used in daily lives because they are ubiquitous and can be customized by installing third-party apps. As a result, the menaces because of these apps, which are potentially risky for user's privacy, have increased. Information on smartphones is perhaps, more personal than compared to data stored on desktops or computers, making it an easy target for intruders. After Android, the most prevalently used mobile operating system is Apple's iOS. Both Android and iOS follow permission-based access control to protect user's privacy. However, the users are unaware whether the app is breaching the user's privacy. To combat this problem, in the paper we propose a hybrid approach to detect malicious iOS apps based on its permissions. In the first phase, weights have been assigned to app permissions using multi-criteria decision-making (MCDM) approach namely Analytic Hierarchy Process (AHP), and in the second phase machine learning & ensemble learning techniques have been employed to train the classifiers for detecting malicious apps. To test the efficacy of the proposed method dataset comprising 1150 apps from 12 app categories has been used. The results demonstrate the proposed approach improves the efficacy of detecting malicious iOS apps for majority of categories. 
610 4 |a Apple Inc 
653 |a Operating systems 
653 |a Analytic hierarchy process 
653 |a Smartphones 
653 |a Applications programs 
653 |a Multiple criterion 
653 |a Personal computers 
653 |a Privacy 
653 |a Multiple criteria decision making 
653 |a Effectiveness 
653 |a Access control 
653 |a Hierarchies 
653 |a Machine learning 
653 |a Decision making 
653 |a Ensemble learning 
653 |a Mobile operating systems 
700 1 |a Sardana, Neetu  |u Department of Computer Science & Engineering and Information Technology, Jaypee Institute of Information Technology, India 
773 0 |t Informatica  |g vol. 49, no. 1 (Mar 2025), p. 207 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3185278983/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3185278983/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3185278983/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch