Enhancing Frequency Event Detection in Power Systems Using Two Optimization Methods with Variable Weighted Metrics

Guardado en:
Detalles Bibliográficos
Publicado en:Energies vol. 18, no. 7 (2025), p. 1659
Autor principal: Alghamdi, Hussain A
Otros Autores: Adham, Midrar A, Umar Farooq, Bass, Robert B
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3188826258
003 UK-CbPIL
022 |a 1996-1073 
024 7 |a 10.3390/en18071659  |2 doi 
035 |a 3188826258 
045 2 |b d20250101  |b d20251231 
084 |a 231459  |2 nlm 
100 1 |a Alghamdi, Hussain A  |u Department of Electrical & Computer Engineering, Portland State University, Portland, OR 97201, USA; <email>midrar@pdx.edu</email> (M.A.A.); <email>robert.bass@pdx.edu</email> (R.B.B.) 
245 1 |a Enhancing Frequency Event Detection in Power Systems Using Two Optimization Methods with Variable Weighted Metrics 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This research presents a novel technique that refines the performance of a frequency event detection algorithm with four adjustable parameters based on signal processing and statistical methods. The algorithm parameters were optimized using two well-established optimization techniques: Grey Wolf Optimization and Particle Swarm Optimization. Unlike conventional approaches that apply equally weighted metrics within the objective function, this work implements variable weighted metrics that prioritize specificity, thereby strengthening detection accuracy by minimizing false-positive events. Realistic small- and large-scale frequency datasets were processed and analyzed, incorporating various events, quasi-events, and non-events obtained from a phasor measurement unit in the Western Interconnection. An analytical comparison with an algorithm that uses equally weighted metrics was performed to assess the proposed method’s effectiveness. The results demonstrate that the application of variable weighted metrics enables the detection algorithm to identify frequency non-events, thereby significantly reducing false positives reliably. 
653 |a Machine learning 
653 |a Accuracy 
653 |a Wavelet transforms 
653 |a Hypothesis testing 
653 |a Metastasis 
653 |a Fourier transforms 
653 |a Optimization techniques 
653 |a Genetic algorithms 
653 |a Statistical methods 
653 |a Signal processing 
653 |a Support vector machines 
653 |a Statistical analysis 
700 1 |a Adham, Midrar A  |u Department of Electrical & Computer Engineering, Portland State University, Portland, OR 97201, USA; <email>midrar@pdx.edu</email> (M.A.A.); <email>robert.bass@pdx.edu</email> (R.B.B.) 
700 1 |a Umar Farooq  |u National Grid ESO, Wokingham RG41 5BN, UK; <email>ixumer@gmail.com</email> 
700 1 |a Bass, Robert B  |u Department of Electrical & Computer Engineering, Portland State University, Portland, OR 97201, USA; <email>midrar@pdx.edu</email> (M.A.A.); <email>robert.bass@pdx.edu</email> (R.B.B.) 
773 0 |t Energies  |g vol. 18, no. 7 (2025), p. 1659 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3188826258/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3188826258/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3188826258/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch