An Innovative Indoor Localization Method for Agricultural Robots Based on the NLOS Base Station Identification and IBKA-BP Integration
Guardado en:
| Publicado en: | Agriculture vol. 15, no. 8 (2025), p. 901 |
|---|---|
| Autor principal: | |
| Otros Autores: | , , , , , |
| Publicado: |
MDPI AG
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | This study proposes an innovative indoor localization algorithm based on the base station identification and improved black kite algorithm–backpropagation (IBKA-BP) integration to address the problem of low positioning accuracy in agricultural robots operating in agricultural greenhouses and breeding farms, where the Global Navigation Satellite System is unreliable due to weak or absent signals. First, the density peaks clustering (DPC) algorithm is applied to select a subset of line-of-sight (LOS) base stations with higher positioning accuracy for backpropagation neural network modeling. Next, the collected received signal strength indication (RSSI) data are processed using Kalman filtering and Min-Max normalization, suppressing signal fluctuations and accelerating the gradient descent convergence of the distance measurement model. Finally, the improved black kite algorithm (IBKA) is enhanced with tent chaotic mapping, a lens imaging reverse learning strategy, and the golden sine strategy to optimize the weights and biases of the BP neural network, developing an RSSI-based ranging algorithm using the IBKA-BP neural network. The experimental results demonstrate that the proposed algorithm can achieve a mean error of 16.34 cm, a standard deviation of 16.32 cm, and a root mean square error of 22.87 cm, indicating its significant potential for precise indoor localization of agricultural robots. |
|---|---|
| ISSN: | 2077-0472 |
| DOI: | 10.3390/agriculture15080901 |
| Fuente: | Agriculture Science Database |