An Innovative Indoor Localization Method for Agricultural Robots Based on the NLOS Base Station Identification and IBKA-BP Integration

Gardado en:
Detalles Bibliográficos
Publicado en:Agriculture vol. 15, no. 8 (2025), p. 901
Autor Principal: Yang, Jingjing
Outros autores: Wan Lihong, Qian Junbing, Li Zonglun, Mao Zhijie, Zhang, Xueming, Lei Junjie
Publicado:
MDPI AG
Materias:
Acceso en liña:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3194484835
003 UK-CbPIL
022 |a 2077-0472 
024 7 |a 10.3390/agriculture15080901  |2 doi 
035 |a 3194484835 
045 2 |b d20250101  |b d20251231 
084 |a 231331  |2 nlm 
100 1 |a Yang, Jingjing  |u Faculty of Civil Aviation and Aeronautics, Kunming University of Science and Technology, Kunming 650500, China; 20170050@kust.edu.cn (J.Y.); 20222245012@stu.kust.edu.cn (L.W.); 20140013@kust.edu.cn (J.Q.); lizonglun@stu.kust.edu.cn (Z.L.) 
245 1 |a An Innovative Indoor Localization Method for Agricultural Robots Based on the NLOS Base Station Identification and IBKA-BP Integration 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This study proposes an innovative indoor localization algorithm based on the base station identification and improved black kite algorithm–backpropagation (IBKA-BP) integration to address the problem of low positioning accuracy in agricultural robots operating in agricultural greenhouses and breeding farms, where the Global Navigation Satellite System is unreliable due to weak or absent signals. First, the density peaks clustering (DPC) algorithm is applied to select a subset of line-of-sight (LOS) base stations with higher positioning accuracy for backpropagation neural network modeling. Next, the collected received signal strength indication (RSSI) data are processed using Kalman filtering and Min-Max normalization, suppressing signal fluctuations and accelerating the gradient descent convergence of the distance measurement model. Finally, the improved black kite algorithm (IBKA) is enhanced with tent chaotic mapping, a lens imaging reverse learning strategy, and the golden sine strategy to optimize the weights and biases of the BP neural network, developing an RSSI-based ranging algorithm using the IBKA-BP neural network. The experimental results demonstrate that the proposed algorithm can achieve a mean error of 16.34 cm, a standard deviation of 16.32 cm, and a root mean square error of 22.87 cm, indicating its significant potential for precise indoor localization of agricultural robots. 
653 |a Accuracy 
653 |a Localization method 
653 |a Distance measurement 
653 |a Algorithms 
653 |a Robots 
653 |a Clustering 
653 |a Neural networks 
653 |a Back propagation networks 
653 |a Signal strength 
653 |a Line of sight 
653 |a Methods 
653 |a Localization 
653 |a Kalman filters 
653 |a Global navigation satellite system 
653 |a Economic 
700 1 |a Wan Lihong  |u Faculty of Civil Aviation and Aeronautics, Kunming University of Science and Technology, Kunming 650500, China; 20170050@kust.edu.cn (J.Y.); 20222245012@stu.kust.edu.cn (L.W.); 20140013@kust.edu.cn (J.Q.); lizonglun@stu.kust.edu.cn (Z.L.) 
700 1 |a Qian Junbing  |u Faculty of Civil Aviation and Aeronautics, Kunming University of Science and Technology, Kunming 650500, China; 20170050@kust.edu.cn (J.Y.); 20222245012@stu.kust.edu.cn (L.W.); 20140013@kust.edu.cn (J.Q.); lizonglun@stu.kust.edu.cn (Z.L.) 
700 1 |a Li Zonglun  |u Faculty of Civil Aviation and Aeronautics, Kunming University of Science and Technology, Kunming 650500, China; 20170050@kust.edu.cn (J.Y.); 20222245012@stu.kust.edu.cn (L.W.); 20140013@kust.edu.cn (J.Q.); lizonglun@stu.kust.edu.cn (Z.L.) 
700 1 |a Mao Zhijie  |u Department of Intelligent Science and Engineering, Yantai Nanshan University, Yantai 264000, China; doosqy@163.com 
700 1 |a Zhang, Xueming  |u Yunyi Aviation Technology (Yunnan) Co., Ltd., Dabanqiao Subdistrict, Guandu District, Kunming 650000, China; xuem_zhang@163.com 
700 1 |a Lei Junjie  |u Faculty of Civil Aviation and Aeronautics, Kunming University of Science and Technology, Kunming 650500, China; 20170050@kust.edu.cn (J.Y.); 20222245012@stu.kust.edu.cn (L.W.); 20140013@kust.edu.cn (J.Q.); lizonglun@stu.kust.edu.cn (Z.L.) 
773 0 |t Agriculture  |g vol. 15, no. 8 (2025), p. 901 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3194484835/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3194484835/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3194484835/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch