An Innovative Indoor Localization Method for Agricultural Robots Based on the NLOS Base Station Identification and IBKA-BP Integration
Gardado en:
| Publicado en: | Agriculture vol. 15, no. 8 (2025), p. 901 |
|---|---|
| Autor Principal: | |
| Outros autores: | , , , , , |
| Publicado: |
MDPI AG
|
| Materias: | |
| Acceso en liña: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetas: |
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3194484835 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2077-0472 | ||
| 024 | 7 | |a 10.3390/agriculture15080901 |2 doi | |
| 035 | |a 3194484835 | ||
| 045 | 2 | |b d20250101 |b d20251231 | |
| 084 | |a 231331 |2 nlm | ||
| 100 | 1 | |a Yang, Jingjing |u Faculty of Civil Aviation and Aeronautics, Kunming University of Science and Technology, Kunming 650500, China; 20170050@kust.edu.cn (J.Y.); 20222245012@stu.kust.edu.cn (L.W.); 20140013@kust.edu.cn (J.Q.); lizonglun@stu.kust.edu.cn (Z.L.) | |
| 245 | 1 | |a An Innovative Indoor Localization Method for Agricultural Robots Based on the NLOS Base Station Identification and IBKA-BP Integration | |
| 260 | |b MDPI AG |c 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a This study proposes an innovative indoor localization algorithm based on the base station identification and improved black kite algorithm–backpropagation (IBKA-BP) integration to address the problem of low positioning accuracy in agricultural robots operating in agricultural greenhouses and breeding farms, where the Global Navigation Satellite System is unreliable due to weak or absent signals. First, the density peaks clustering (DPC) algorithm is applied to select a subset of line-of-sight (LOS) base stations with higher positioning accuracy for backpropagation neural network modeling. Next, the collected received signal strength indication (RSSI) data are processed using Kalman filtering and Min-Max normalization, suppressing signal fluctuations and accelerating the gradient descent convergence of the distance measurement model. Finally, the improved black kite algorithm (IBKA) is enhanced with tent chaotic mapping, a lens imaging reverse learning strategy, and the golden sine strategy to optimize the weights and biases of the BP neural network, developing an RSSI-based ranging algorithm using the IBKA-BP neural network. The experimental results demonstrate that the proposed algorithm can achieve a mean error of 16.34 cm, a standard deviation of 16.32 cm, and a root mean square error of 22.87 cm, indicating its significant potential for precise indoor localization of agricultural robots. | |
| 653 | |a Accuracy | ||
| 653 | |a Localization method | ||
| 653 | |a Distance measurement | ||
| 653 | |a Algorithms | ||
| 653 | |a Robots | ||
| 653 | |a Clustering | ||
| 653 | |a Neural networks | ||
| 653 | |a Back propagation networks | ||
| 653 | |a Signal strength | ||
| 653 | |a Line of sight | ||
| 653 | |a Methods | ||
| 653 | |a Localization | ||
| 653 | |a Kalman filters | ||
| 653 | |a Global navigation satellite system | ||
| 653 | |a Economic | ||
| 700 | 1 | |a Wan Lihong |u Faculty of Civil Aviation and Aeronautics, Kunming University of Science and Technology, Kunming 650500, China; 20170050@kust.edu.cn (J.Y.); 20222245012@stu.kust.edu.cn (L.W.); 20140013@kust.edu.cn (J.Q.); lizonglun@stu.kust.edu.cn (Z.L.) | |
| 700 | 1 | |a Qian Junbing |u Faculty of Civil Aviation and Aeronautics, Kunming University of Science and Technology, Kunming 650500, China; 20170050@kust.edu.cn (J.Y.); 20222245012@stu.kust.edu.cn (L.W.); 20140013@kust.edu.cn (J.Q.); lizonglun@stu.kust.edu.cn (Z.L.) | |
| 700 | 1 | |a Li Zonglun |u Faculty of Civil Aviation and Aeronautics, Kunming University of Science and Technology, Kunming 650500, China; 20170050@kust.edu.cn (J.Y.); 20222245012@stu.kust.edu.cn (L.W.); 20140013@kust.edu.cn (J.Q.); lizonglun@stu.kust.edu.cn (Z.L.) | |
| 700 | 1 | |a Mao Zhijie |u Department of Intelligent Science and Engineering, Yantai Nanshan University, Yantai 264000, China; doosqy@163.com | |
| 700 | 1 | |a Zhang, Xueming |u Yunyi Aviation Technology (Yunnan) Co., Ltd., Dabanqiao Subdistrict, Guandu District, Kunming 650000, China; xuem_zhang@163.com | |
| 700 | 1 | |a Lei Junjie |u Faculty of Civil Aviation and Aeronautics, Kunming University of Science and Technology, Kunming 650500, China; 20170050@kust.edu.cn (J.Y.); 20222245012@stu.kust.edu.cn (L.W.); 20140013@kust.edu.cn (J.Q.); lizonglun@stu.kust.edu.cn (Z.L.) | |
| 773 | 0 | |t Agriculture |g vol. 15, no. 8 (2025), p. 901 | |
| 786 | 0 | |d ProQuest |t Agriculture Science Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3194484835/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text + Graphics |u https://www.proquest.com/docview/3194484835/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3194484835/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch |