Wavelet-Based Optimization and Numerical Computing for Fault Detection Method—Signal Fault Localization and Classification Algorithm

Guardat en:
Dades bibliogràfiques
Publicat a:Algorithms vol. 18, no. 4 (2025), p. 217
Autor principal: Sakovich Nikita
Altres autors: Aksenov Dmitry, Pleshakova Ekaterina, Gataullin Sergey
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
Descripció
Resum:This study focuses on the development of the WONC-FD (Wavelet-Based Optimization and Numerical Computing for Fault Detection) algorithm for the accurate detection and categorization of faults in signals using wavelet analysis augmented with numerical methods. Fault detection is a key problem in areas related to seismic activity analysis, vibration assessment of industrial equipment, structural integrity control, and electrical grid reliability. In the proposed methodology, wavelet transform serves to accurately localize anomalies in the data, and optimization techniques are introduced to refine the classification based on minimizing the error function. This not only improves the accuracy of fault identification but also provides a better understanding of its nature.
ISSN:1999-4893
DOI:10.3390/a18040217
Font:Engineering Database