A Comprehensive Survey of MapReduce Models for Processing Big Data

Guardado en:
Detalles Bibliográficos
Publicado en:Big Data and Cognitive Computing vol. 9, no. 4 (2025), p. 77
Autor principal: Abdalla Hemn Barzan
Otros Autores: Kumar, Yulia, Zhao, Yue, Tosi Davide
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:With the rapid increase in the amount of big data, traditional software tools are facing complexity in tackling big data, which is a huge concern in the research industry. In addition, the management and processing of big data have become more difficult, thus increasing security threats. Various fields encountered issues in fully making use of these large-scale data with supported decision-making. Data mining methods have been tremendously improved to identify patterns for sorting a larger set of data. MapReduce models provide greater advantages for in-depth data evaluation and can be compatible with various applications. This survey analyses the various map-reducing models utilized for big data processing, the techniques harnessed in the reviewed literature, and the challenges. Furthermore, this survey reviews the major advancements of diverse types of map-reduce models, namely Hadoop, Hive, Pig, MongoDB, Spark, and Cassandra. Besides the reliable map-reducing approaches, this survey also examined various metrics utilized for computing the performance of big data processing among the applications. More specifically, this review summarizes the background of MapReduce and its terminologies, types, different techniques, and applications to advance the MapReduce framework for big data processing. This study provides good insights for conducting more experiments in the field of processing and managing big data.
ISSN:2504-2289
DOI:10.3390/bdcc9040077
Fuente:Advanced Technologies & Aerospace Database