A Comprehensive Survey of MapReduce Models for Processing Big Data

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Big Data and Cognitive Computing vol. 9, no. 4 (2025), p. 77
Egile nagusia: Abdalla Hemn Barzan
Beste egile batzuk: Kumar, Yulia, Zhao, Yue, Tosi Davide
Argitaratua:
MDPI AG
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3194489404
003 UK-CbPIL
022 |a 2504-2289 
024 7 |a 10.3390/bdcc9040077  |2 doi 
035 |a 3194489404 
045 2 |b d20250101  |b d20251231 
100 1 |a Abdalla Hemn Barzan  |u Department of Computer Science, Wenzhou-Kean University, Wenzhou 325015, China; yuezhao@kean.edu 
245 1 |a A Comprehensive Survey of MapReduce Models for Processing Big Data 
260 |b MDPI AG  |c 2025 
513 |a Literature Review 
520 3 |a With the rapid increase in the amount of big data, traditional software tools are facing complexity in tackling big data, which is a huge concern in the research industry. In addition, the management and processing of big data have become more difficult, thus increasing security threats. Various fields encountered issues in fully making use of these large-scale data with supported decision-making. Data mining methods have been tremendously improved to identify patterns for sorting a larger set of data. MapReduce models provide greater advantages for in-depth data evaluation and can be compatible with various applications. This survey analyses the various map-reducing models utilized for big data processing, the techniques harnessed in the reviewed literature, and the challenges. Furthermore, this survey reviews the major advancements of diverse types of map-reduce models, namely Hadoop, Hive, Pig, MongoDB, Spark, and Cassandra. Besides the reliable map-reducing approaches, this survey also examined various metrics utilized for computing the performance of big data processing among the applications. More specifically, this review summarizes the background of MapReduce and its terminologies, types, different techniques, and applications to advance the MapReduce framework for big data processing. This study provides good insights for conducting more experiments in the field of processing and managing big data. 
653 |a Big Data 
653 |a Data mining 
653 |a Data processing 
653 |a Datasets 
653 |a Classification 
653 |a Literature reviews 
653 |a Batch processing 
653 |a Algorithms 
653 |a Structured Query Language-SQL 
653 |a Software 
653 |a Business metrics 
700 1 |a Kumar, Yulia  |u Department of Computer Science and Technology, Kean University, Union, NJ 07083, USA; ykumar@kean.edu 
700 1 |a Zhao, Yue  |u Department of Computer Science, Wenzhou-Kean University, Wenzhou 325015, China; yuezhao@kean.edu 
700 1 |a Tosi Davide  |u Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy; davide.tosi@uninsubria.it 
773 0 |t Big Data and Cognitive Computing  |g vol. 9, no. 4 (2025), p. 77 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3194489404/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3194489404/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3194489404/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch