A Robust Framework for Probability Distribution Generation: Analyzing Structural Properties and Applications in Engineering and Medicine

Guardado en:
Detalles Bibliográficos
Publicado en:Axioms vol. 14, no. 4 (2025), p. 281
Autor principal: Mir Aadil Ahmad
Otros Autores: Rasool, Shamshad Ur, Ahmad, S P, Bhat, A A, Jawa, Taghreed M, Sayed-Ahmed, Neveen, Tolba, Ahlam H
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:This study introduces a novel trigonometric-based family of distributions for modeling continuous data through a newly proposed framework known as the ASP family, where ‘ASP’ represents the initials of the authors Aadil, Shamshad, and Parvaiz. A specific subclass of this family, termed the “ASP Rayleigh distribution” (ASPRD), is introduced that features two parameters. We conducted a comprehensive statistical analysis of the ASPRD, exploring its key properties and demonstrating its superior adaptability. The model parameters are estimated using four classical estimation methods: maximum likelihood estimation (MLE), least squares estimation (LSE), weighted least squares estimation (WLSE), and maximum product of spaces estimation (MPSE). Extensive simulation studies confirm these estimation techniques’ robustness, showing that biases, mean squared errors, and root mean squared errors consistently decrease as sample sizes increase. To further validate its applicability, we employ ASPRD on three real-world engineering datasets, showcasing its effectiveness in modeling complex data structures. This work not only strengthens the theoretical framework of probability distributions but also provides valuable tools for practical applications, paving the way for future advancements in statistical modeling.
ISSN:2075-1680
DOI:10.3390/axioms14040281
Fuente:Engineering Database