A Robust Framework for Probability Distribution Generation: Analyzing Structural Properties and Applications in Engineering and Medicine

Збережено в:
Бібліографічні деталі
Опубліковано в::Axioms vol. 14, no. 4 (2025), p. 281
Автор: Mir Aadil Ahmad
Інші автори: Rasool, Shamshad Ur, Ahmad, S P, Bhat, A A, Jawa, Taghreed M, Sayed-Ahmed, Neveen, Tolba, Ahlam H
Опубліковано:
MDPI AG
Предмети:
Онлайн доступ:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!

MARC

LEADER 00000nab a2200000uu 4500
001 3194489440
003 UK-CbPIL
022 |a 2075-1680 
024 7 |a 10.3390/axioms14040281  |2 doi 
035 |a 3194489440 
045 2 |b d20250101  |b d20251231 
084 |a 231430  |2 nlm 
100 1 |a Mir Aadil Ahmad  |u Department of Statistics, University of Kashmir, Srinagar 190006, India; aadilmir.stscholar@kashmiruniversity.net (A.A.M.); shamshad.stscholar@kashmiruniversity.net (S.U.R.); sprvz@uok.edu.in (S.P.A.) 
245 1 |a A Robust Framework for Probability Distribution Generation: Analyzing Structural Properties and Applications in Engineering and Medicine 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This study introduces a novel trigonometric-based family of distributions for modeling continuous data through a newly proposed framework known as the ASP family, where ‘ASP’ represents the initials of the authors Aadil, Shamshad, and Parvaiz. A specific subclass of this family, termed the “ASP Rayleigh distribution” (ASPRD), is introduced that features two parameters. We conducted a comprehensive statistical analysis of the ASPRD, exploring its key properties and demonstrating its superior adaptability. The model parameters are estimated using four classical estimation methods: maximum likelihood estimation (MLE), least squares estimation (LSE), weighted least squares estimation (WLSE), and maximum product of spaces estimation (MPSE). Extensive simulation studies confirm these estimation techniques’ robustness, showing that biases, mean squared errors, and root mean squared errors consistently decrease as sample sizes increase. To further validate its applicability, we employ ASPRD on three real-world engineering datasets, showcasing its effectiveness in modeling complex data structures. This work not only strengthens the theoretical framework of probability distributions but also provides valuable tools for practical applications, paving the way for future advancements in statistical modeling. 
653 |a Maximum likelihood estimation 
653 |a Errors 
653 |a Parameter estimation 
653 |a Adaptability 
653 |a Rayleigh distribution 
653 |a Statistical analysis 
653 |a Statistical models 
653 |a Probability distribution 
653 |a Data structures 
653 |a Flexibility 
700 1 |a Rasool, Shamshad Ur  |u Department of Statistics, University of Kashmir, Srinagar 190006, India; aadilmir.stscholar@kashmiruniversity.net (A.A.M.); shamshad.stscholar@kashmiruniversity.net (S.U.R.); sprvz@uok.edu.in (S.P.A.) 
700 1 |a Ahmad, S P  |u Department of Statistics, University of Kashmir, Srinagar 190006, India; aadilmir.stscholar@kashmiruniversity.net (A.A.M.); shamshad.stscholar@kashmiruniversity.net (S.U.R.); sprvz@uok.edu.in (S.P.A.) 
700 1 |a Bhat, A A  |u Department of Mathematical Sciences, Islamic University of Science and Technology, Pulwama 192122, India 
700 1 |a Jawa, Taghreed M  |u Department of Mathematics and Statistics, College of Sciences, Taif University, Taif 21944, Saudi Arabia; tmjawa@tu.edu.sa (T.M.J.); neveen.s@tu.edu.sa (N.S.-A.) 
700 1 |a Sayed-Ahmed, Neveen  |u Department of Mathematics and Statistics, College of Sciences, Taif University, Taif 21944, Saudi Arabia; tmjawa@tu.edu.sa (T.M.J.); neveen.s@tu.edu.sa (N.S.-A.) 
700 1 |a Tolba, Ahlam H  |u Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; dr_ahamdy156@mans.edu.eg 
773 0 |t Axioms  |g vol. 14, no. 4 (2025), p. 281 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3194489440/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3194489440/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3194489440/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch