Research on the Visual SLAM Algorithm for Unmanned Surface Vehicles in Nearshore Dynamic Scenarios

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Marine Science and Engineering vol. 13, no. 4 (2025), p. 679
Autor principal: Zhang Yanran
Otros Autores: Zhang, Lan, Yu, Qiang, Bowen, Xing
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3194618489
003 UK-CbPIL
022 |a 2077-1312 
024 7 |a 10.3390/jmse13040679  |2 doi 
035 |a 3194618489 
045 2 |b d20250101  |b d20251231 
084 |a 231479  |2 nlm 
100 1 |a Zhang Yanran  |u College of Engineering Science and Technology, Shanghai Ocean University, Shanghai 201306, China; z17879573206@163.com 
245 1 |a Research on the Visual SLAM Algorithm for Unmanned Surface Vehicles in Nearshore Dynamic Scenarios 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a To address the challenges of visual SLAM algorithms in unmanned surface vehicles (USVs) during nearshore navigation or docking, where dynamic feature points degrade localization accuracy and dynamic objects impede static dense mapping, this study proposes an improved visual SLAM algorithm that removes dynamic feature points. Building upon the ORB-SLAM3 framework, the improved SLAM algorithm integrates a shore segmentation module and a dynamic region elimination module, while enabling static dense point cloud mapping. The system first implements shore segmentation based on Otsu’s method to generate masks covering water and sky regions, ensuring the SLAM system avoids extracting interfering feature points from these areas. Secondly, the deep learning network YOLOv8n-seg is employed to detect priori dynamic objects, with the motion consistency check method to identify non-priori dynamic feature points, collectively removing dynamic feature points. Additionally, the ELAS algorithm computes disparity maps, integrating depth information and dynamic object information to construct a static dense map. Experimental results demonstrate that, compared to the original ORB-SLAM3, the improved SLAM algorithm achieves superior localization accuracy in dynamic nearshore environments, significantly reduces the impact of dynamic objects on pose estimation, and successfully constructs ghosting-free static dense point cloud maps. 
653 |a Simultaneous localization and mapping 
653 |a Accuracy 
653 |a Deep learning 
653 |a Algorithms 
653 |a Identification methods 
653 |a Surface vehicles 
653 |a Segmentation 
653 |a Navigation 
653 |a Unmanned vehicles 
653 |a Modules 
653 |a Localization 
653 |a Mapping 
653 |a Cameras 
653 |a Methods 
653 |a Pose estimation 
653 |a Geometry 
653 |a Vehicles 
653 |a Masks 
653 |a Semantics 
653 |a Environmental 
700 1 |a Zhang, Lan  |u Shanghai Zhongchuan SDT-NERC Co., Ltd., Shanghai 201114, China 
700 1 |a Yu, Qiang  |u Shanghai Zhongchuan SDT-NERC Co., Ltd., Shanghai 201114, China 
700 1 |a Bowen, Xing  |u College of Engineering Science and Technology, Shanghai Ocean University, Shanghai 201306, China; z17879573206@163.com 
773 0 |t Journal of Marine Science and Engineering  |g vol. 13, no. 4 (2025), p. 679 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3194618489/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3194618489/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3194618489/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch