Adaptive Sliding Mode Fault-Tolerant Tracking Control for Underactuated Unmanned Surface Vehicles

Zapisane w:
Opis bibliograficzny
Wydane w:Journal of Marine Science and Engineering vol. 13, no. 4 (2025), p. 712
1. autor: Zhou Weixiang
Kolejni autorzy: Cheng, Hongying, Chen, Zihao, Menglong, Hua
Wydane:
MDPI AG
Hasła przedmiotowe:
Dostęp online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etykiety: Dodaj etykietę
Nie ma etykietki, Dołącz pierwszą etykiete!

MARC

LEADER 00000nab a2200000uu 4500
001 3194618832
003 UK-CbPIL
022 |a 2077-1312 
024 7 |a 10.3390/jmse13040712  |2 doi 
035 |a 3194618832 
045 2 |b d20250101  |b d20251231 
084 |a 231479  |2 nlm 
100 1 |a Zhou Weixiang 
245 1 |a Adaptive Sliding Mode Fault-Tolerant Tracking Control for Underactuated Unmanned Surface Vehicles 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This article proposes an adaptive sliding mode fault-tolerant tracking control scheme for underactuated unmanned surface vehicles (USVs) that suffer from loss of effectiveness and increase in bias input when performing path tracking. First, the mathematical model and fault model of USVs are introduced. Then, the USV is driven along the planned path by back-stepping and fast terminal sliding mode control. The radial basis function (RBF) neural network is used to approximate the unknown external disturbances caused by wind, waves, and currents, the unmodeled dynamics of the system, the actuator non-executed portions and bias faults. An adaptive law is designed to account for the loss of effectiveness of the thruster. In addition, through the analysis of Lyapunov stability criteria, it is proved that the proposed control method can asymptotically converge the tracking error to zero. Finally, this paper uses a simulation to demonstrate that, when a fault occurs, the tracking effect of the fault-tolerant control method proposed in this paper is almost the same as that without a fault, which proves the effectiveness of the designed adaptive law. 
653 |a Kinematics 
653 |a Failure 
653 |a Bias 
653 |a Surface vehicles 
653 |a Fault tolerance 
653 |a Stability criteria 
653 |a Mathematical models 
653 |a Path tracking 
653 |a Tracking 
653 |a Motion control 
653 |a Approximation 
653 |a Unmanned vehicles 
653 |a Tracking errors 
653 |a Velocity 
653 |a Control algorithms 
653 |a Neural networks 
653 |a Radial basis function 
653 |a Control methods 
653 |a Tracking control 
653 |a Effectiveness 
653 |a Thrusters 
653 |a Design 
653 |a Sliding mode control 
653 |a Slumping 
653 |a Actuators 
653 |a Vehicles 
653 |a Environmental 
700 1 |a Cheng, Hongying 
700 1 |a Chen, Zihao 
700 1 |a Menglong, Hua 
773 0 |t Journal of Marine Science and Engineering  |g vol. 13, no. 4 (2025), p. 712 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3194618832/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3194618832/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3194618832/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch