Optimization-Based Approaches to Uncertainty Analysis of Structures Using Non-Probabilistic Modeling: A Review

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer Modeling in Engineering & Sciences vol. 143, no. 1 (2025), p. 115
Hlavní autor: Kanno, Yoshihiro
Další autoři: Takewaki, Izuru
Vydáno:
Tech Science Press
Témata:
On-line přístup:Citation/Abstract
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Abstrakt:Response analysis of structures involving non-probabilistic uncertain parameters can be closely related to optimization. This paper provides a review on optimization-based methods for uncertainty analysis, with focusing attention on specific properties of adopted numerical optimization approaches. We collect and discuss the methods based on nonlinear programming, semidefinite programming, mixed-integer programming, mathematical programming with complementarity constraints, difference-of-convex programming, optimization methods using surrogate models and machine learning techniques, and metaheuristics. As a closely related topic, we also overview the methods for assessing structural robustness using non-probabilistic uncertainty modeling. We conclude the paper by drawing several remarks through this review.
ISSN:1526-1492
1526-1506
DOI:10.32604/cmes.2025.061551
Zdroj:Advanced Technologies & Aerospace Database