Optimization-Based Approaches to Uncertainty Analysis of Structures Using Non-Probabilistic Modeling: A Review
Đã lưu trong:
| Xuất bản năm: | Computer Modeling in Engineering & Sciences vol. 143, no. 1 (2025), p. 115 |
|---|---|
| Tác giả chính: | |
| Tác giả khác: | |
| Được phát hành: |
Tech Science Press
|
| Những chủ đề: | |
| Truy cập trực tuyến: | Citation/Abstract Full Text - PDF |
| Các nhãn: |
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
| Bài tóm tắt: | Response analysis of structures involving non-probabilistic uncertain parameters can be closely related to optimization. This paper provides a review on optimization-based methods for uncertainty analysis, with focusing attention on specific properties of adopted numerical optimization approaches. We collect and discuss the methods based on nonlinear programming, semidefinite programming, mixed-integer programming, mathematical programming with complementarity constraints, difference-of-convex programming, optimization methods using surrogate models and machine learning techniques, and metaheuristics. As a closely related topic, we also overview the methods for assessing structural robustness using non-probabilistic uncertainty modeling. We conclude the paper by drawing several remarks through this review. |
|---|---|
| số ISSN: | 1526-1492 1526-1506 |
| DOI: | 10.32604/cmes.2025.061551 |
| Nguồn: | Advanced Technologies & Aerospace Database |