Adaptive neural network terminal sliding mode tracking control for uncertain nonlinear systems with time-varying state constraints

Na minha lista:
Detalhes bibliográficos
Publicado no:Measurement and Control vol. 58, no. 5 (May 2025), p. 553
Autor principal: Dao-gen Jiang
Outros Autores: Long-jin, Lv, Sun-hao, Song, Jia-hao, Li
Publicado em:
Sage Publications Ltd.
Assuntos:
Acesso em linha:Citation/Abstract
Full text outside of ProQuest
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3201689778
003 UK-CbPIL
022 |a 0020-2940 
022 |a 2051-8730 
024 7 |a 10.1177/00202940241279360  |2 doi 
035 |a 3201689778 
045 2 |b d20250501  |b d20250531 
100 1 |a Dao-gen Jiang  |u Information and Intelligent Engineering Department, Ningbo City College of Vocational Technology, Ningbo, China 
245 1 |a Adaptive neural network terminal sliding mode tracking control for uncertain nonlinear systems with time-varying state constraints 
260 |b Sage Publications Ltd.  |c May 2025 
513 |a Journal Article 
520 3 |a Exploring a novel adaptive asymmetric sliding mode control methodology with time-varying state constraints (TVSCs), we address trajectory tracking issues in uncertain nonlinear systems. The asymmetric barrier Lyapunov functions (ABLFs) and neural networks is employed within each subsystem’s virtual control design process using back-stepping control (BSC) method. This ensures the imposition of TVSCs and effectively addresses challenges posed by system uncertainties. Additionally, to enhance the convergence of tracking deviations within small zero neighborhoods, a nonsingular integral terminal sliding mode control (NITSMC) method is incorporated into the actual control algorithm design. This method illustrates that, the system states consistently stay within the specified boundaries, tracking errors rapidly converge to a confined range. All signals within the system remain bounded. Simulation findings affirm the efficacy of the suggested control strategy. 
653 |a Asymmetry 
653 |a Control theory 
653 |a Neural networks 
653 |a Tracking control 
653 |a Mode tracking 
653 |a Sliding mode control 
653 |a Algorithms 
653 |a Nonlinear systems 
653 |a Subsystems 
653 |a Nonlinear control 
653 |a Liapunov functions 
653 |a Control methods 
653 |a Tracking errors 
653 |a Constraints 
700 1 |a Long-jin, Lv  |u Economics and Information College, Ningbo University of Finance and Economics, Ningbo, China 
700 1 |a Sun-hao, Song  |u Information and Intelligent Engineering Department, Ningbo City College of Vocational Technology, Ningbo, China 
700 1 |a Jia-hao, Li  |u Information and Intelligent Engineering Department, Ningbo City College of Vocational Technology, Ningbo, China 
773 0 |t Measurement and Control  |g vol. 58, no. 5 (May 2025), p. 553 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3201689778/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://journals.sagepub.com/doi/10.1177/00202940241279360