Adaptive neural network terminal sliding mode tracking control for uncertain nonlinear systems with time-varying state constraints
محفوظ في:
| الحاوية / القاعدة: | Measurement and Control vol. 58, no. 5 (May 2025), p. 553 |
|---|---|
| المؤلف الرئيسي: | |
| مؤلفون آخرون: | , , |
| منشور في: |
Sage Publications Ltd.
|
| الموضوعات: | |
| الوصول للمادة أونلاين: | Citation/Abstract Full text outside of ProQuest |
| الوسوم: |
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
| مستخلص: | Exploring a novel adaptive asymmetric sliding mode control methodology with time-varying state constraints (TVSCs), we address trajectory tracking issues in uncertain nonlinear systems. The asymmetric barrier Lyapunov functions (ABLFs) and neural networks is employed within each subsystem’s virtual control design process using back-stepping control (BSC) method. This ensures the imposition of TVSCs and effectively addresses challenges posed by system uncertainties. Additionally, to enhance the convergence of tracking deviations within small zero neighborhoods, a nonsingular integral terminal sliding mode control (NITSMC) method is incorporated into the actual control algorithm design. This method illustrates that, the system states consistently stay within the specified boundaries, tracking errors rapidly converge to a confined range. All signals within the system remain bounded. Simulation findings affirm the efficacy of the suggested control strategy. |
|---|---|
| تدمد: | 0020-2940 2051-8730 |
| DOI: | 10.1177/00202940241279360 |
| المصدر: | Advanced Technologies & Aerospace Database |