AI Chatbots and Subject Cataloging: A Performance Test

Enregistré dans:
Détails bibliographiques
Publié dans:Library Resources & Technical Services vol. 69, no. 2 (Apr 2025)
Auteur principal: Dobreski, Brian
Autres auteurs: Hastings, Christopher
Publié:
American Library Association
Sujets:
Accès en ligne:Citation/Abstract
Full Text - PDF
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Libraries show an increasing interest in incorporating AI tools into their workflows, particularlyeasily accessible and free-to-use chatbots. However, empirical evidence is limited regarding theeffectiveness of these tools to perform traditionally time-consuming subject cataloging tasks. In thisstudy, researchers sought to assess the performance of AI tools in performing basic subject headingand classification number assignment. Using a well-established instructional cataloging text as abasis, researchers developed and administered a test designed to evaluate the effectiveness of three chatbots (ChatGPT, Gemini, Copilot) in assigning Dewey Decimal Classification, Library of Congress Classification, and Library of Congress Subject Heading terms and numbers. The quantity and quality of errors in chatbot responses were analyzed.
ISSN:0024-2527
2159-9610
DOI:10.5860/lrts.69n2.8440
Source:Library Science Database