AI Chatbots and Subject Cataloging: A Performance Test

Salvato in:
Dettagli Bibliografici
Pubblicato in:Library Resources & Technical Services vol. 69, no. 2 (Apr 2025)
Autore principale: Dobreski, Brian
Altri autori: Hastings, Christopher
Pubblicazione:
American Library Association
Soggetti:
Accesso online:Citation/Abstract
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!
Descrizione
Abstract:Libraries show an increasing interest in incorporating AI tools into their workflows, particularlyeasily accessible and free-to-use chatbots. However, empirical evidence is limited regarding theeffectiveness of these tools to perform traditionally time-consuming subject cataloging tasks. In thisstudy, researchers sought to assess the performance of AI tools in performing basic subject headingand classification number assignment. Using a well-established instructional cataloging text as abasis, researchers developed and administered a test designed to evaluate the effectiveness of three chatbots (ChatGPT, Gemini, Copilot) in assigning Dewey Decimal Classification, Library of Congress Classification, and Library of Congress Subject Heading terms and numbers. The quantity and quality of errors in chatbot responses were analyzed.
ISSN:0024-2527
2159-9610
DOI:10.5860/lrts.69n2.8440
Fonte:Library Science Database