Unsupervised clustering optimization-based efficient attention in YOLO for underwater object detection

Guardado en:
Detalles Bibliográficos
Publicado en:The Artificial Intelligence Review vol. 58, no. 7 (Jul 2025), p. 219
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3204041298
003 UK-CbPIL
022 |a 0269-2821 
022 |a 1573-7462 
024 7 |a 10.1007/s10462-025-11218-6  |2 doi 
035 |a 3204041298 
045 2 |b d20250701  |b d20250731 
084 |a 68693  |2 nlm 
245 1 |a Unsupervised clustering optimization-based efficient attention in YOLO for underwater object detection 
260 |b Springer Nature B.V.  |c Jul 2025 
513 |a Journal Article 
520 3 |a Underwater object detection is a prerequisite for underwater robots to realize ocean exploration and autonomous grasping. However, underwater detection tasks face some inevitable interference factors, such as poor imaging quality, strong environment randomness, and high organism concealment. These phenomena will lead to strong underwater background interference and weak underwater object perception, which greatly aggravates the difficulty of underwater object detection. In order to deal with the above problems, we propose an unsupervised clustering optimization-based efficient attention (UCOEA). Different from the channel-wise strategy, cross-channel strategy and channel grouping strategy, we design a channel clustering strategy, which achieves autonomous dynamic screening of channel information by using the K-Means algorithm. Same types of channel information with high redundancy are learned uniformly to share the same operation. Different types of channel information with high specificity are learned independently to avoid channel noise information interference. Different from the single spatial strategy and multiple spatial strategy, we design a spatial clustering strategy, which achieves autonomous dynamic stripping of spatial information by using the EM algorithm. This strategy can extract multiple required spatial information at one time from different spatial locations. We further assign learnable weight parameters to distinguish dominant information and auxiliary information, which can alleviate spatial noise information interference. Our strategies can better balance additional cost overhead and information processing quality, which is crucial for the proposed attention to achieve fast and accurate underwater information calibration. In order to achieve high-precision and real-time underwater object detection, we propose a combined system of UCOEA underwater adapter and one-stage YOLO detector, which can efficiently detect small, medium and large targets at the same time. Extensive experiments demonstrate the effectiveness of our work. More importantly, we publish an underwater detection dataset DLMU2024 with low image continuity and high data diversity, which provides reliable support for the rapid development of underwater detection research. Our dataset is available at <ext-link xlink:href="https://github.com/shenxin-dlmu/DLMU2024" ext-link-type="uri">https://github.com/shenxin-dlmu/DLMU2024</ext-link>. 
653 |a Datasets 
653 |a Data processing 
653 |a Deep learning 
653 |a Spatial data 
653 |a Clustering 
653 |a Sensors 
653 |a Optimization 
653 |a Underwater robots 
653 |a Attention 
653 |a Design 
653 |a Algorithms 
653 |a Information processing 
653 |a Channel noise 
653 |a Object recognition 
653 |a Visual perception 
653 |a Real time 
653 |a Redundancy 
653 |a Image processing systems 
653 |a Experiments 
653 |a Randomness 
653 |a Object perception 
653 |a Strategies 
653 |a Noise 
653 |a Robotics 
653 |a Robots 
653 |a Learning transfer 
773 0 |t The Artificial Intelligence Review  |g vol. 58, no. 7 (Jul 2025), p. 219 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3204041298/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3204041298/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch