Assessing Creativity across Multi-Step Intervention Using Generative AI Models

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Learning Analytics vol. 12, no. 1 (2025), p. 91
1. Verfasser: Hadas, Eran
Weitere Verfasser: Hershkovitz, Arnon
Veröffentlicht:
Society for Learning Analytics Research
Schlagworte:
Online-Zugang:Citation/Abstract
Full text outside of ProQuest
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3206891604
003 UK-CbPIL
035 |a 3206891604 
045 2 |b d20250101  |b d20251231 
084 |a EJ1465584 
100 1 |a Hadas, Eran 
245 1 |a Assessing Creativity across Multi-Step Intervention Using Generative AI Models 
260 |b Society for Learning Analytics Research  |c 2025 
513 |a Report Article 
520 3 |a Creativity is an imperative skill for today's learners, one that has important contributions to issues of inclusion and equity in education. Therefore, assessing creativity is of major importance in educational contexts. However, scoring creativity based on traditional tools suffers from subjectivity and is heavily time- and labour-consuming. This is indeed the case for the commonly used Alternative Uses Test (AUT), in which participants are asked to list as many different uses as possible for a daily object. The test measures divergent thinking (DT), which involves exploring multiple possible solutions in various semantic domains. This study leverages recent advancements in generative AI (GenAI) to automate the AUT scoring process, potentially increasing efficiency and objectivity. Using two validated models, we analyze the dynamics of creativity dimensions in a multi-step intervention aimed at improving creativity by using repeated AUT sessions (N=157 9th-grade students). Our research questions focus on the behavioural patterns of DT dimensions over time, their correlation with the number of practice opportunities, and the influence of response order on creativity scores. The results show improvement in fluency and flexibility, as a function of practice opportunities, as well as various correlations between DT dimensions. By automating the scoring process, this study aims to provide deeper insights into the development of creative skills over time and explore the capabilities of GenAI in educational assessments. Eventually, the use of automatic evaluation can incorporate creativity evaluation in various educational processes at scale. 
653 |a Creativity 
653 |a Evaluation Methods 
653 |a Computer Assisted Testing 
653 |a Artificial Intelligence 
653 |a Computer Software 
653 |a Scoring 
653 |a Behavior Patterns 
653 |a Creative Thinking 
653 |a Intervention 
653 |a Grade 9 
653 |a Correlation 
653 |a Learning Analytics 
653 |a Semantics 
653 |a Efficiency 
653 |a Scores 
653 |a Creativity Tests 
653 |a Longitudinal Studies 
700 1 |a Hershkovitz, Arnon 
773 0 |t Journal of Learning Analytics  |g vol. 12, no. 1 (2025), p. 91 
786 0 |d ProQuest  |t ERIC 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3206891604/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://doi.org/10.18608/jla.2025.8571