Enhancing Efficiency and Reducing the Carbon Footprint of Cloud-Based Healthcare Applications through Optimal Data Preprocessing

Збережено в:
Бібліографічні деталі
Опубліковано в::EPJ Web of Conferences vol. 326 (2025)
Автор: Btissam El Aziz
Інші автори: Eddabbah, Mohammed, Yassin Laaziz
Опубліковано:
EDP Sciences
Предмети:
Онлайн доступ:Citation/Abstract
Full Text - PDF
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Опис
Короткий огляд:This paper investigates the impact of data preprocessing on the performance, efficiency, and environmental footprint of AI models in cloud-based applications, focusing on a case study involving healthcare applications such as chronic disease detection. We analyze how preprocessing techniques affect some of the most commonly used Machine Learning (ML) algorithms, namely K-means, SVM, and KNN, emphasizing their role in reducing computational load, energy consumption, and carbon emissions in data centers. Our results demonstrate that the impact of preprocessing on both accuracy and processing speed varies depending on the algorithm and the type of preprocessing applied. Notable improvements in precision and processing time reductions of up to 35% were observed, highlighting the potential of preprocessing to enhance the performance and sustainability of ML algorithms.
ISSN:2101-6275
2100-014X
DOI:10.1051/epjconf/202532605005
Джерело:Advanced Technologies & Aerospace Database