Enhancing Efficiency and Reducing the Carbon Footprint of Cloud-Based Healthcare Applications through Optimal Data Preprocessing

Furkejuvvon:
Bibliográfalaš dieđut
Publikašuvnnas:EPJ Web of Conferences vol. 326 (2025)
Váldodahkki: Btissam El Aziz
Eará dahkkit: Eddabbah, Mohammed, Yassin Laaziz
Almmustuhtton:
EDP Sciences
Fáttát:
Liŋkkat:Citation/Abstract
Full Text - PDF
Fáddágilkorat: Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!

MARC

LEADER 00000nab a2200000uu 4500
001 3206991011
003 UK-CbPIL
022 |a 2101-6275 
022 |a 2100-014X 
024 7 |a 10.1051/epjconf/202532605005  |2 doi 
035 |a 3206991011 
045 2 |b d20250101  |b d20251231 
084 |a 182355  |2 nlm 
100 1 |a Btissam El Aziz 
245 1 |a Enhancing Efficiency and Reducing the Carbon Footprint of Cloud-Based Healthcare Applications through Optimal Data Preprocessing 
260 |b EDP Sciences  |c 2025 
513 |a Conference Proceedings 
520 3 |a This paper investigates the impact of data preprocessing on the performance, efficiency, and environmental footprint of AI models in cloud-based applications, focusing on a case study involving healthcare applications such as chronic disease detection. We analyze how preprocessing techniques affect some of the most commonly used Machine Learning (ML) algorithms, namely K-means, SVM, and KNN, emphasizing their role in reducing computational load, energy consumption, and carbon emissions in data centers. Our results demonstrate that the impact of preprocessing on both accuracy and processing speed varies depending on the algorithm and the type of preprocessing applied. Notable improvements in precision and processing time reductions of up to 35% were observed, highlighting the potential of preprocessing to enhance the performance and sustainability of ML algorithms. 
653 |a Algorithms 
653 |a Performance enhancement 
653 |a Preprocessing 
653 |a Emissions 
653 |a Machine learning 
653 |a Health care 
653 |a Energy consumption 
653 |a Carbon 
653 |a Footprint analysis 
653 |a Cloud computing 
653 |a Environmental impact 
700 1 |a Eddabbah, Mohammed 
700 1 |a Yassin Laaziz 
773 0 |t EPJ Web of Conferences  |g vol. 326 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3206991011/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3206991011/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch