The dark side of artificial intelligence adoption: linking artificial intelligence adoption to employee depression via psychological safety and ethical leadership

Guardado en:
Detalles Bibliográficos
Publicado en:Humanities & Social Sciences Communications vol. 12, no. 1 (Dec 2025), p. 704
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3208900836
003 UK-CbPIL
022 |a 2662-9992 
022 |a 2055-1045 
024 7 |a 10.1057/s41599-025-05040-2  |2 doi 
035 |a 3208900836 
045 2 |b d20251201  |b d20251231 
245 1 |a The dark side of artificial intelligence adoption: linking artificial intelligence adoption to employee depression via psychological safety and ethical leadership 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a Artificial intelligence (AI) is increasingly being integrated into business practices, fundamentally altering workplace dynamics and employee experiences. While the adoption of AI brings numerous benefits, it also introduces negative aspects that may adversely affect employee well-being, including psychological distress and depression. Drawing upon a range of theoretical perspectives, this study examines the association between organizational AI adoption and employee depression, investigating how psychological safety mediates this relationship and how ethical leadership serves as a moderating factor. Utilizing an online survey platform, we conducted a 3-wave time-lagged research study involving 381 employees from South Korean companies. Structural equation modeling analysis revealed that AI adoption has a significant negative impact on psychological safety, which in turn increases levels of depression. Data were analyzed using SPSS 28 for preliminary analyses and AMOS 28 for structural equation modeling with maximum likelihood estimation. Further analysis using bootstrapping methods confirmed that psychological safety mediates the relationship between AI adoption and employee depression. The study also discovered that ethical leadership can mitigate the adverse effects of AI adoption on psychological safety by moderating the relationship between these variables. These findings highlight the critical importance of fostering a psychologically safe work environment and promoting ethical leadership practices to protect employee well-being amid rapid technological advancements. Contributing to the growing body of literature on the psychological effects of AI adoption in the workplace, this research offers valuable insights for organizations seeking to address the human implications of AI integration. The section discusses the practical and theoretical implications of the results and suggests potential directions for future research. 
653 |a Well being 
653 |a Behavior 
653 |a Mental depression 
653 |a Technology adoption 
653 |a Mental health 
653 |a Business ethics 
653 |a Psychological safety 
653 |a Artificial intelligence 
653 |a Influence 
653 |a Employees 
653 |a Leadership styles 
653 |a Mental disorders 
653 |a Organizational change 
653 |a Ethics 
653 |a Leadership 
653 |a Safety 
653 |a Research 
653 |a Adoption of innovations 
653 |a Psychological distress 
653 |a Psychological theories 
653 |a Structural equation modeling 
653 |a Work environment 
653 |a Bootstrapping 
653 |a Side effects 
653 |a Workplaces 
653 |a Work 
653 |a Psychological aspects 
653 |a Maximum likelihood method 
653 |a Bootstrap method 
653 |a Psychological well being 
773 0 |t Humanities & Social Sciences Communications  |g vol. 12, no. 1 (Dec 2025), p. 704 
786 0 |d ProQuest  |t Social Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3208900836/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3208900836/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3208900836/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch