Optimization of Unmanned Excavator Operation Trajectory Based on Improved Particle Swarm Optimization

Պահպանված է:
Մատենագիտական մանրամասներ
Հրատարակված է:Actuators vol. 14, no. 5 (2025), p. 226
Հիմնական հեղինակ: Wang, Tingting
Այլ հեղինակներ: He, Xiaohui, Zhou Yunkang, Shao Faming
Հրապարակվել է:
MDPI AG
Խորագրեր:
Առցանց հասանելիություն:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Ցուցիչներ: Ավելացրեք ցուցիչ
Չկան պիտակներ, Եղեք առաջինը, ով նշում է այս գրառումը!

MARC

LEADER 00000nab a2200000uu 4500
001 3211846137
003 UK-CbPIL
022 |a 2076-0825 
024 7 |a 10.3390/act14050226  |2 doi 
035 |a 3211846137 
045 2 |b d20250101  |b d20251231 
084 |a 231328  |2 nlm 
100 1 |a Wang, Tingting 
245 1 |a Optimization of Unmanned Excavator Operation Trajectory Based on Improved Particle Swarm Optimization 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a To realize the autonomous operation of unmanned excavators, this study takes the four-axis manipulator arm of an unmanned excavator as the research object, uses the five-order B-spline curve for operation trajectory planning, and proposes an improved particle swarm optimization algorithm for the continuous trajectory optimization problem of excavator single operation. The specific contents are as follows: based on the standard PSO algorithm, dynamic parameter update is used to enhance the global search ability in the early stage and improve the local search accuracy in the later stage; the diversity monitoring mechanism is enhanced to avoid premature maturity convergence; multi-particle SA perturbation is introduced, and the new solution is accepted according to the Metropolis criterion to enhance global search ability. The adaptive cooling rate flexibly responds to different search situations and improves the search efficiency and quality of the solution. To verify the effectiveness of the improved PSO–SA algorithm, this study compares it with the standard PSO algorithm, the standard PSO–SA algorithm, and the MPSO algorithm. The simulation results show that the improved PSO–SA algorithm can converge to the global optimal solution more quickly, has the shortest time in trajectory planning, and the generated trajectory has higher tracking accuracy, which ensures that the vibration and impact of the manipulator during motion are effectively suppressed. 
653 |a Kinematics 
653 |a Velocity 
653 |a Particle swarm optimization 
653 |a Accuracy 
653 |a Excavators 
653 |a Trajectory optimization 
653 |a B spline functions 
653 |a Genetic algorithms 
653 |a Optimization 
653 |a Searching 
653 |a Robots 
653 |a Algorithms 
653 |a Methods 
653 |a Cooling rate 
653 |a Trajectory planning 
653 |a Energy consumption 
653 |a Efficiency 
653 |a Robotics 
700 1 |a He, Xiaohui 
700 1 |a Zhou Yunkang 
700 1 |a Shao Faming 
773 0 |t Actuators  |g vol. 14, no. 5 (2025), p. 226 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3211846137/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3211846137/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3211846137/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch