Do Waterborne Nanoplastics Affect the Shore Crab Carcinus maenas? A Case Study with Poly(methyl)methacrylate Particles

Guardado en:
Detalles Bibliográficos
Publicado en:Environments vol. 12, no. 5 (2025), p. 169
Autor principal: Neves Beatriz
Otros Autores: Oliveira, Miguel, Frazão Carolina, Almeida Mónica, Pinto Ricardo J. B., Figueira Etelvina, Pires Adília
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3211940601
003 UK-CbPIL
022 |a 2076-3298 
024 7 |a 10.3390/environments12050169  |2 doi 
035 |a 3211940601 
045 2 |b d20250101  |b d20251231 
100 1 |a Neves Beatriz  |u Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; beatrizrneves@ua.pt 
245 1 |a Do Waterborne Nanoplastics Affect the Shore Crab <i>Carcinus maenas</i>? A Case Study with Poly(methyl)methacrylate Particles 
260 |b MDPI AG  |c 2025 
513 |a Case Study Journal Article 
520 3 |a Nanoplastics (NPs) pose a significant environmental threat due to their small sizes, widespread distribution, and bioavailability, enabling interactions with marine organisms from pelagic to benthic species. In this study, the effects of 10 days of exposure to waterborne poly(methyl)methacrylate (PMMA) NPs were evaluated in the crab Carcinus maenas by assessing behavioral and biochemical endpoints (in gills, hepatopancreas, muscle, and hemolymph). Behavioral assessments using an open field test revealed that exposure to PMMA NPs resulted in an increase in distance walked (from 73.662 ± 17.137 cm in control to 248.560 ± 25.462 cm in the highest PMMA NPs concentration) and in random movement patterns. Muscle acetylcholinesterase (AChE) activity decreased from 10.83 ± 0.73 to 6.75 ± 0.45 nmol/min/mg of protein with PMMA NPs concentration increase, which, combined with behavioral responses, suggests neurological incapacities. In the gills and hepatopancreas, defense and detoxification mechanisms were activated, with a significant increase in superoxide dismutase (SOD) activity (at 20 µg/L in gills and 80 µg/L in hepatopancreas) and glutathione S-transferases (GSTs) activity (all PMMA NPs concentrations in gills and 20 and 320 µg/L in hepatopancreas). Despite these activations, oxidative damage was observed, with a significant increase in protein carbonylation (PC) levels (20, 80, and 320 µg/L in gills and 5, 20, and 80 µg/L in hepatopancreas) and lipid peroxidation (LPO) (80 and 320 µg/L in gills and 80 µg/L in hepatopancreas). Effects on hemolymph followed a pattern similar to those reported for gills and hepatopancreas. An increase in SOD hemolymph activity was observed in organisms exposed to 5 and 80 µg/L, and GSTs activity increased in crabs exposed to 80 µg/L. Oxidative damage in hemolymph was only detected through LPO at 5 and 320 µg/L. Overall, this study showed that PMMA NPs induce biochemical alterations and damage in different tissues of C. maenas and affect its behavior with potential impacts at a population level. 
651 4 |a South Korea 
653 |a Hepatopancreas 
653 |a Field tests 
653 |a Crustaceans 
653 |a Behavior 
653 |a Shellfish 
653 |a Glutathione 
653 |a Detoxification 
653 |a Polymethylmethacrylate 
653 |a Sediments 
653 |a Carbonyls 
653 |a Lipid peroxidation 
653 |a Damage 
653 |a Gills 
653 |a Habitats 
653 |a Superoxide dismutase 
653 |a Proteins 
653 |a Marine organisms 
653 |a Bioavailability 
653 |a Peroxidation 
653 |a Hemolymph 
653 |a Exposure 
653 |a Environmental impact 
653 |a Acetylcholinesterase 
653 |a Lipids 
653 |a Polymethyl methacrylate 
653 |a Salinity 
653 |a Plastic pollution 
653 |a Open-field behavior 
653 |a Carcinus maenas 
700 1 |a Oliveira, Miguel  |u Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugalmonica.alm@ua.pt (M.A.); efigueira@ua.pt (E.F.) 
700 1 |a Frazão Carolina  |u Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugalmonica.alm@ua.pt (M.A.); efigueira@ua.pt (E.F.) 
700 1 |a Almeida Mónica  |u Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugalmonica.alm@ua.pt (M.A.); efigueira@ua.pt (E.F.) 
700 1 |a Pinto Ricardo J. B.  |u CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; r.pinto@ua.pt 
700 1 |a Figueira Etelvina  |u Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugalmonica.alm@ua.pt (M.A.); efigueira@ua.pt (E.F.) 
700 1 |a Pires Adília  |u Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugalmonica.alm@ua.pt (M.A.); efigueira@ua.pt (E.F.) 
773 0 |t Environments  |g vol. 12, no. 5 (2025), p. 169 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3211940601/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3211940601/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3211940601/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch