Subchannel Reactor Studies: Applications and Advances Using Lattice Boltzmann Method—Comprehensive Review Study

Guardado en:
Detalles Bibliográficos
Publicado en:Fluids vol. 10, no. 5 (2025), p. 109
Autor principal: Abutiatey, Eugene
Otros Autores: Chung Pil-Seung
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:Computational fluid dynamics (CFD) is an instrumental tool used in tackling the challenges of flow behavior and safety within nuclear reactor cores. Traditional CFD methods like finite volume, finite element, and finite difference have driven significant progress in nuclear engineering, particularly in single-phase and two-phase flow modeling, multiscale analysis, and multiphysics coupling. However, the Lattice Boltzmann Method (LBM), an advancing CFD tool for nuclear reactor subchannel study, remains underexplored in this field. LBM takes a unique mesoscopic approach by modeling particle distributions on a discrete lattice, offering a bridge between microscopic dynamics and macroscopic continuum behavior. Since the integration of LBM into the Lattice Bhatnagar–Gross–Krook (LBGK) model, it has significantly advanced, proving its efficiency in handling complex flow conditions. This review explores the potential of LBM in nuclear reactor subchannel applications. This study emphasizes LBM as a robust computational tool for subchannel study by highlighting its strengths, limitations, and future possibilities.
ISSN:2311-5521
DOI:10.3390/fluids10050109
Fuente:Materials Science Database