Subchannel Reactor Studies: Applications and Advances Using Lattice Boltzmann Method—Comprehensive Review Study

Guardado en:
Detalles Bibliográficos
Publicado en:Fluids vol. 10, no. 5 (2025), p. 109
Autor principal: Abutiatey, Eugene
Otros Autores: Chung Pil-Seung
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3211943992
003 UK-CbPIL
022 |a 2311-5521 
024 7 |a 10.3390/fluids10050109  |2 doi 
035 |a 3211943992 
045 2 |b d20250101  |b d20251231 
100 1 |a Abutiatey, Eugene  |u Department of Nanoscience and Engineering, Inje University, 197 Inje-ro, Gimhae-si 50834, Gyeongsangnam-do, Republic of Korea; nanakwesi@oasis.inje.ac.kr 
245 1 |a Subchannel Reactor Studies: Applications and Advances Using Lattice Boltzmann Method—Comprehensive Review Study 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Computational fluid dynamics (CFD) is an instrumental tool used in tackling the challenges of flow behavior and safety within nuclear reactor cores. Traditional CFD methods like finite volume, finite element, and finite difference have driven significant progress in nuclear engineering, particularly in single-phase and two-phase flow modeling, multiscale analysis, and multiphysics coupling. However, the Lattice Boltzmann Method (LBM), an advancing CFD tool for nuclear reactor subchannel study, remains underexplored in this field. LBM takes a unique mesoscopic approach by modeling particle distributions on a discrete lattice, offering a bridge between microscopic dynamics and macroscopic continuum behavior. Since the integration of LBM into the Lattice Bhatnagar–Gross–Krook (LBGK) model, it has significantly advanced, proving its efficiency in handling complex flow conditions. This review explores the potential of LBM in nuclear reactor subchannel applications. This study emphasizes LBM as a robust computational tool for subchannel study by highlighting its strengths, limitations, and future possibilities. 
653 |a Finite volume method 
653 |a Principles 
653 |a Hydrodynamics 
653 |a Reactors 
653 |a Fluid dynamics 
653 |a Modelling 
653 |a Finite difference method 
653 |a Reactor cores 
653 |a Nuclear reactors 
653 |a Two phase flow 
653 |a Nuclear engineering 
653 |a Efficiency 
653 |a Heat transfer 
653 |a Simulation 
653 |a Nuclear energy 
653 |a Energy conservation 
653 |a Viscosity 
653 |a Alternative energy 
653 |a Nuclear safety 
653 |a Multiscale analysis 
653 |a Finite element analysis 
653 |a Computational fluid dynamics 
653 |a Emission standards 
653 |a Multiphase flow 
653 |a Software 
653 |a Nuclear accidents & safety 
700 1 |a Chung Pil-Seung  |u Department of Energy Engineering, Inje University, 197 Inje-ro, Gimhae-si 50834, Gyeongsangnam-do, Republic of Korea 
773 0 |t Fluids  |g vol. 10, no. 5 (2025), p. 109 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3211943992/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3211943992/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3211943992/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch