Effects of Thinning of the Infected Trees and Cultivating of the Resistant Pines on Soil Microbial Diversity and Function

Guardado en:
Detalles Bibliográficos
Publicado en:Forests vol. 16, no. 5 (2025), p. 813
Autor principal: Zhang, Xiaorui
Otros Autores: Liu, Zhuo, Cao Mu, Dai Tingting
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:Pine wilt disease (PWD) poses a significant threat to pine forest health, making sanitation thinning of infected trees and cultivation of disease-resistant pine stands crucial measures for forest ecosystem restoration. To date, limited studies have systematically investigated how post-sanitation planting of pine-wilt-disease-resistant Pinus species affects soil microbiome, especially regarding bacterial and fungal diversity characteristics, functional succession patterns, and community assembly processes. In this study, we performed a comparative analysis of soil microbial community characteristics and biochemical properties between experimental plots subjected to sanitation thinning and those replanted with disease-resistant pine species. The results indicated that compared to the sanitation-thinned experimental plot, the disease-resistant experimental plots (Pinus taeda experimental plot and Pinus thunbergii experimental plot) exhibited significantly higher activities of β-glucosidase (S-β-GC), N-acetyl-β-D-glucosidase (S-NAG), and soil arylsulfatase (S-ASF). Compared with the sanitation logging stands, our analysis revealed that the Pinus taeda experimental plot and Pinus thunbergii experimental plot exhibited significantly higher fungal community evenness (OTUs), greater species abundance (OTUs), and more unique fungal taxa. Furthermore, the edaphic properties—specifically soil moisture content (SMC), pH levels, and total potassium (TK)—significantly influenced the structures of soil bacterial and fungal communities. Compared to the sanitation-thinned experimental plot, wood saprotrophic fungi and ectomycorrhizal fungi exhibited increased abundance in both the P. taeda experimental plot and Pinus thunbergii experimental plot. Furthermore, the null models indicated that both the P. taeda experimental plot and P. thunbergii experimental plot enhanced the undominated processes of bacteria and fungi. In summary, our data elucidate the differences in bacterial and fungal responses between pine forests undergoing thinning due to infected trees and those cultivated for disease resistance. This deepens our understanding of microbial functions and community assembly processes within these ecosystems.
ISSN:1999-4907
DOI:10.3390/f16050813
Fuente:Agriculture Science Database