Integrating Reliability, Uncertainty, and Subjectivity in Design Knowledge Flow: A CMZ-BENR Augmented Framework for Kansei Engineering

I tiakina i:
Ngā taipitopito rārangi puna kōrero
I whakaputaina i:Symmetry vol. 17, no. 5 (2025), p. 758
Kaituhi matua: Lin Haoyi
Ētahi atu kaituhi: Wang Pohsun, Liu, Jing, Chu Chiawei
I whakaputaina:
MDPI AG
Ngā marau:
Urunga tuihono:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Ngā Tūtohu: Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!
Whakaahuatanga
Whakarāpopotonga:As a knowledge-intensive activity, the Kansei engineering (KE) process encounters numerous challenges in the design knowledge flow, primarily due to issues related to information reliability, uncertainty, and subjectivity. Bridging this gap, this study introduces an advanced KE framework integrating a cloud model with Z-numbers (CMZ) and Bayesian elastic net regression (BENR). In stage-I of this KE, data mining techniques are employed to process online user reviews, coupled with a similarity analysis of affective word clusters to identify representative emotional descriptors. During stage-II, the CMZ algorithm refines K-means clustering outcomes for market-representative product forms, enabling precise feature characterization and experimental prototype development. Stage-III addresses linguistic uncertainties in affective modeling through CMZ-augmented semantic differential questionnaires, achieving a multi-granular representation of subjective evaluations. Subsequently, stage-IV employs BENR for automated hyperparameter optimization in design knowledge inference, eliminating manual intervention. The framework’s efficacy is empirically validated through a domestic cleaning robot case study, demonstrating superior performance in resolving multiple information processing challenges via comparative experiments. Results confirm that this KE framework significantly improves uncertainty management in design knowledge flow compared to conventional implementations. Furthermore, by leveraging the intrinsic symmetry of the normal cloud model with Z-numbers distributions and the balanced ℓ1/ℓ2 regularization of BENR, CMZ–BENR framework embodies the principle of structural harmony.
ISSN:2073-8994
DOI:10.3390/sym17050758
Puna:Engineering Database