Integrating Reliability, Uncertainty, and Subjectivity in Design Knowledge Flow: A CMZ-BENR Augmented Framework for Kansei Engineering

Guardado en:
Bibliografiske detaljer
Udgivet i:Symmetry vol. 17, no. 5 (2025), p. 758
Hovedforfatter: Lin Haoyi
Andre forfattere: Wang Pohsun, Liu, Jing, Chu Chiawei
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3212135418
003 UK-CbPIL
022 |a 2073-8994 
024 7 |a 10.3390/sym17050758  |2 doi 
035 |a 3212135418 
045 2 |b d20250101  |b d20251231 
084 |a 231635  |2 nlm 
100 1 |a Lin Haoyi  |u Faculty of Innovation and Design, City University of Macau, Macau 999078, China; u24092110553@cityu.edu.mo (H.L.); jingliu@cityu.edu.mo (J.L.) 
245 1 |a Integrating Reliability, Uncertainty, and Subjectivity in Design Knowledge Flow: A CMZ-BENR Augmented Framework for Kansei Engineering 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a As a knowledge-intensive activity, the Kansei engineering (KE) process encounters numerous challenges in the design knowledge flow, primarily due to issues related to information reliability, uncertainty, and subjectivity. Bridging this gap, this study introduces an advanced KE framework integrating a cloud model with Z-numbers (CMZ) and Bayesian elastic net regression (BENR). In stage-I of this KE, data mining techniques are employed to process online user reviews, coupled with a similarity analysis of affective word clusters to identify representative emotional descriptors. During stage-II, the CMZ algorithm refines K-means clustering outcomes for market-representative product forms, enabling precise feature characterization and experimental prototype development. Stage-III addresses linguistic uncertainties in affective modeling through CMZ-augmented semantic differential questionnaires, achieving a multi-granular representation of subjective evaluations. Subsequently, stage-IV employs BENR for automated hyperparameter optimization in design knowledge inference, eliminating manual intervention. The framework’s efficacy is empirically validated through a domestic cleaning robot case study, demonstrating superior performance in resolving multiple information processing challenges via comparative experiments. Results confirm that this KE framework significantly improves uncertainty management in design knowledge flow compared to conventional implementations. Furthermore, by leveraging the intrinsic symmetry of the normal cloud model with Z-numbers distributions and the balanced ℓ1/ℓ2 regularization of BENR, CMZ–BENR framework embodies the principle of structural harmony. 
653 |a Sparsity 
653 |a Data processing 
653 |a Fuzzy sets 
653 |a Regression analysis 
653 |a Questionnaires 
653 |a Uncertainty 
653 |a Product design 
653 |a Machine learning 
653 |a Regularization 
653 |a Data mining 
653 |a Cluster analysis 
653 |a Artificial intelligence 
653 |a Clustering 
653 |a Reliability 
653 |a Neural networks 
653 |a Decision making 
653 |a Knowledge management 
653 |a Regularization methods 
653 |a Algorithms 
653 |a Knowledge based engineering 
653 |a Engineering 
653 |a Linguistics 
653 |a Subjectivity 
653 |a Design optimization 
653 |a Morphology 
653 |a Vector quantization 
653 |a Product development 
700 1 |a Wang Pohsun  |u Faculty of Innovation and Design, City University of Macau, Macau 999078, China; u24092110553@cityu.edu.mo (H.L.); jingliu@cityu.edu.mo (J.L.) 
700 1 |a Liu, Jing  |u Faculty of Innovation and Design, City University of Macau, Macau 999078, China; u24092110553@cityu.edu.mo (H.L.); jingliu@cityu.edu.mo (J.L.) 
700 1 |a Chu Chiawei  |u Faculty of Data Science, City University of Macau, Macau 999078, China; cwchu@cityu.edu.mo 
773 0 |t Symmetry  |g vol. 17, no. 5 (2025), p. 758 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3212135418/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3212135418/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3212135418/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch