Space-time optical diffraction from synthetic motion

Guardado en:
Detalles Bibliográficos
Publicado en:Nature Communications vol. 16, no. 1 (2025), p. 5147
Publicado:
Nature Publishing Group
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3215391750
003 UK-CbPIL
022 |a 2041-1723 
024 7 |a 10.1038/s41467-025-60159-9  |2 doi 
035 |a 3215391750 
045 2 |b d20250101  |b d20251231 
084 |a 145839  |2 nlm 
245 1 |a Space-time optical diffraction from synthetic motion 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a The interaction of light with objects and media moving at relativistic and superluminal speeds enables unconventional phenomena such as Fresnel drag, Hawking radiation, and light amplification. Synthetic motion, facilitated by modulated internal degrees of freedom, enables the study of relativistic phenomena unrestricted by the speed of light. In this study, we investigate synthetically moving apertures created by high-contrast reflectivity modulations, which are generated by ultrafast laser pulses on a subwavelength thin film of indium tin oxide. The space-time diffraction of a weaker probe beam reveals a complex, non-separable spatio-temporal transformation, where changes in the frequency of the wave are correlated to changes in its momentum. By using schemes of continuous or discrete modulation we demonstrate tunable frequency-momentum diffraction patterns with gradients that depend upon the relative velocity between the modulation and the probe wave. The diffraction patterns are matched by operator-based theory and the gradients are analytically predicted using a super-relativistic Doppler model, where the modulation is described as a superluminally moving scattering particle. Our experiments open a path towards mimicking relativistic mechanics and developing complex and programmable spatio-temporal transformations of light.Relativistic motion enables unusual light-matter interactions. Here, authors use ultrafast lasers to create synthetically moving reflectivity patterns that diffract light in space and time, enabling tuneable frequency-momentum control, mimicking scattering from a sub-, or super-, luminal object. 
653 |a Reflectance 
653 |a Relativistic effects 
653 |a Wave diffraction 
653 |a Mimicry 
653 |a Relativity 
653 |a Scattering 
653 |a Modulation 
653 |a Diffraction 
653 |a Hawking radiation 
653 |a Ultrafast lasers 
653 |a Spacetime 
653 |a Thin films 
653 |a Diffraction patterns 
653 |a Light 
653 |a Light speed 
653 |a Momentum 
653 |a Indium tin oxides 
653 |a Environmental 
773 0 |t Nature Communications  |g vol. 16, no. 1 (2025), p. 5147 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3215391750/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3215391750/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch