Balancing workload with sensitivity to efficiently identify randomised controlled trials in an education systematic review

Sparad:
Bibliografiska uppgifter
I publikationen:London Review of Education vol. 23, no. 1 (2025)
Huvudupphov: Stansfield, Claire
Övriga upphov: Alison O’Mara-Eves
Utgiven:
UCL Press
Ämnen:
Länkar:Citation/Abstract
Full Text
Full Text - PDF
Taggar: Lägg till en tagg
Inga taggar, Lägg till första taggen!

MARC

LEADER 00000nab a2200000uu 4500
001 3217116847
003 UK-CbPIL
022 |a 1474-8460 
022 |a 1474-8479 
024 7 |a 10.14324/LRE.23.1.11  |2 doi 
035 |a 3217116847 
045 2 |b d20250101  |b d20251231 
084 |a 144033  |2 nlm 
100 1 |a Stansfield, Claire 
245 1 |a Balancing workload with sensitivity to efficiently identify randomised controlled trials in an education systematic review 
260 |b UCL Press  |c 2025 
513 |a Systematic Reviews 
520 3 |a There is increasing interest in improving the efficiency of systematic review production, yet there is limited literature considering its application within the education field. This article analyses the study identification process adopted in a systematic review on effective teacher professional development, which identified 121 randomised controlled trials. It considers both human and technological inputs that aided production. It draws on project notes, an analysis of database sources and terminology used to identify randomised controlled trials, a retrospective evaluation of useful search terms and an analysis of using machine learning to reduce human workload during eligibility screening of citation records. Study identification was aided by four team processes (relating to ways of working and understanding the review context), the choice of information sources spanning education, psychology and economics research, and a variety of search terms for randomised controlled trials. The search resulted in 5,527 records identified from the main searches, and a further 3,614 records from forward and backward citation searching from the 121 included randomised controlled trials. Machine learning reduced screening workload, but implementation challenges included decisions on when to cease manual screening. In conclusion, carefully planned literature searches combined with machine learning to support eligibility screening can provide workload savings for sensitive study identification of randomised controlled trials in education. Improved reporting of randomised controlled trial design within research would aid these processes. Tools could also be developed to aid implementation of machine learning. 
653 |a Software 
653 |a Collaboration 
653 |a Identification 
653 |a Professional development 
653 |a Automation 
653 |a Workloads 
653 |a Machine learning 
653 |a Databases 
653 |a Information sources 
653 |a Systematic review 
653 |a Education 
653 |a Teacher Effectiveness 
653 |a World Problems 
653 |a Educational Research 
653 |a Control Groups 
653 |a Duplication 
653 |a Screening Tests 
653 |a Periodicals 
653 |a Information Scientists 
653 |a Meta Analysis 
653 |a Reference Materials 
653 |a Evidence 
653 |a Search Strategies 
653 |a Randomized Controlled Trials 
653 |a Information Seeking 
653 |a Artificial Intelligence 
653 |a Computer Software Reviews 
653 |a Teacher Characteristics 
653 |a Eligibility 
653 |a Database Management Systems 
700 1 |a Alison O’Mara-Eves 
773 0 |t London Review of Education  |g vol. 23, no. 1 (2025) 
786 0 |d ProQuest  |t Education Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3217116847/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3217116847/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3217116847/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch