FL‐ADS: Federated learning anomaly detection system for distributed energy resource networks

Guardado en:
Detalles Bibliográficos
Publicado en:IET Cyber-Physical Systems : Theory & Applications vol. 10, no. 1 (Jan/Dec 2025)
Autor principal: Purohit, Shaurya
Otros Autores: Govindarasu, Manimaran, Blakely, Benjamin
Publicado:
John Wiley & Sons, Inc.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3217514413
003 UK-CbPIL
022 |a 2398-3396 
024 7 |a 10.1049/cps2.70001  |2 doi 
035 |a 3217514413 
045 2 |b d20250101  |b d20251231 
100 1 |a Purohit, Shaurya  |u Iowa State University, Ames, Iowa, USA 
245 1 |a FL‐ADS: Federated learning anomaly detection system for distributed energy resource networks 
260 |b John Wiley & Sons, Inc.  |c Jan/Dec 2025 
513 |a Journal Article 
520 3 |a With the ongoing development of Distributed Energy Resources (DER) communication networks, the imperative for strong cybersecurity and data privacy safeguards is increasingly evident. DER networks, which rely on protocols such as Distributed Network Protocol 3 and Modbus, are susceptible to cyberattacks such as data integrity breaches and denial of service due to their inherent security vulnerabilities. This paper introduces an innovative Federated Learning (FL)‐based anomaly detection system designed to enhance the security of DER networks while preserving data privacy. Our models leverage Vertical and Horizontal Federated Learning to enable collaborative learning while preserving data privacy, exchanging only non‐sensitive information, such as model parameters, and maintaining the privacy of DER clients' raw data. The effectiveness of the models is demonstrated through its evaluation on datasets representative of real‐world DER scenarios, showcasing significant improvements in accuracy and F1‐score across all clients compared to the traditional baseline model. Additionally, this work demonstrates a consistent reduction in loss function over multiple FL rounds, further validating its efficacy and offering a robust solution that balances effective anomaly detection with stringent data privacy needs. 
653 |a Data integrity 
653 |a Accuracy 
653 |a Datasets 
653 |a Distributed network protocols 
653 |a Energy sources 
653 |a Protocol 
653 |a Communication 
653 |a Parameter sensitivity 
653 |a Communication networks 
653 |a Privacy 
653 |a Effectiveness 
653 |a Cybersecurity 
653 |a Clients 
653 |a Anomalies 
653 |a Federated learning 
653 |a Collaborative learning 
653 |a Access control 
653 |a Efficiency 
700 1 |a Govindarasu, Manimaran  |u Iowa State University, Ames, Iowa, USA 
700 1 |a Blakely, Benjamin  |u Argonne National Laboratory, Lemont, Illinois, USA 
773 0 |t IET Cyber-Physical Systems : Theory & Applications  |g vol. 10, no. 1 (Jan/Dec 2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3217514413/abstract/embedded/KOLE7RPJVUKQAXRX?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3217514413/fulltext/embedded/KOLE7RPJVUKQAXRX?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3217514413/fulltextPDF/embedded/KOLE7RPJVUKQAXRX?source=fedsrch