Predictive Models with Applicable Graphical User Interface (GUI) for the Compressive Performance of Quaternary Blended Plastic-Derived Sustainable Mortar
Guardado en:
| Publicado en: | Buildings vol. 15, no. 11 (2025), p. 1932 |
|---|---|
| Autor principal: | |
| Otros Autores: | , , |
| Publicado: |
MDPI AG
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | Machine learning (ML) models in material science and construction engineering have significantly improved predictive accuracy and decision making. However, the practical implementation of these models often requires technical expertise, limiting their accessibility for engineers and practitioners. A user-friendly graphical user interface (GUI) can be an essential tool to bridge this gap. In this study, a sustainable approach to improve the compressive strength (C.S) of plastic-based mortar mixes (PMMs) by replacing cement with industrial waste materials was investigated using ML models such as support vector machine, AdaBoost regressor, and extreme gradient boosting. The significance of key mix parameters was further analyzed using SHapley Additive exPlanations (SHAPs) to interpret the influence of input variables on model predictions. To enhance the usability and real-world application of these ML models, a GUI was developed to provide an accessible platform for predicting the C.S of PMMs based on input material proportions. The ML models demonstrated strong correlations with experimental results, and the insights from SHAP analysis further support data-driven mix design strategies. The developed GUI serves as a practical and scalable decision support system, encouraging the adoption of ML-based approaches in sustainable construction engineering. |
|---|---|
| ISSN: | 2075-5309 |
| DOI: | 10.3390/buildings15111932 |
| Fuente: | Engineering Database |