Predictive Models with Applicable Graphical User Interface (GUI) for the Compressive Performance of Quaternary Blended Plastic-Derived Sustainable Mortar

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Buildings vol. 15, no. 11 (2025), p. 1932
Egile nagusia: Aïssa, Rezzoug
Beste egile batzuk: Elabbasy Ahmed A. Abdou, Alqurashi Muwaffaq, AlAteah, Ali H
Argitaratua:
MDPI AG
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3217721224
003 UK-CbPIL
022 |a 2075-5309 
024 7 |a 10.3390/buildings15111932  |2 doi 
035 |a 3217721224 
045 2 |b d20250601  |b d20250614 
084 |a 231437  |2 nlm 
100 1 |a Aïssa, Rezzoug  |u College of Engineering, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia 
245 1 |a Predictive Models with Applicable Graphical User Interface (GUI) for the Compressive Performance of Quaternary Blended Plastic-Derived Sustainable Mortar 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Machine learning (ML) models in material science and construction engineering have significantly improved predictive accuracy and decision making. However, the practical implementation of these models often requires technical expertise, limiting their accessibility for engineers and practitioners. A user-friendly graphical user interface (GUI) can be an essential tool to bridge this gap. In this study, a sustainable approach to improve the compressive strength (C.S) of plastic-based mortar mixes (PMMs) by replacing cement with industrial waste materials was investigated using ML models such as support vector machine, AdaBoost regressor, and extreme gradient boosting. The significance of key mix parameters was further analyzed using SHapley Additive exPlanations (SHAPs) to interpret the influence of input variables on model predictions. To enhance the usability and real-world application of these ML models, a GUI was developed to provide an accessible platform for predicting the C.S of PMMs based on input material proportions. The ML models demonstrated strong correlations with experimental results, and the insights from SHAP analysis further support data-driven mix design strategies. The developed GUI serves as a practical and scalable decision support system, encouraging the adoption of ML-based approaches in sustainable construction engineering. 
653 |a Green development 
653 |a Accessibility 
653 |a Cement hydration 
653 |a Datasets 
653 |a Graphical user interface 
653 |a Sustainability 
653 |a Industrial wastes 
653 |a Machine learning 
653 |a Landfill 
653 |a Prediction models 
653 |a User interface 
653 |a Decision support systems 
653 |a Construction engineering 
653 |a Recycling 
653 |a Artificial intelligence 
653 |a Support vector machines 
653 |a Waste materials 
653 |a Databases 
653 |a Variables 
653 |a Mortars (material) 
653 |a Data collection 
653 |a Algorithms 
653 |a Reinforced concrete 
653 |a Waste management 
653 |a Morphology 
653 |a Decision making 
653 |a Compressive strength 
700 1 |a Elabbasy Ahmed A. Abdou  |u Civil and Architectural Engineering Department, College of Engineering and Computer Sciences, Jazan University, P.O. Box 706, Jazan 45142, Saudi Arabia 
700 1 |a Alqurashi Muwaffaq  |u Department of Civil Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; m.gourashi@tu.edu.sa 
700 1 |a AlAteah, Ali H  |u Department of Civil Engineering, College of Engineering, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia; ali.alateah@uhb.edu.sa 
773 0 |t Buildings  |g vol. 15, no. 11 (2025), p. 1932 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3217721224/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3217721224/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3217721224/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch