AI-Powered Innovations in Food Safety from Farm to Fork

Guardado en:
Detalles Bibliográficos
Publicado en:Foods vol. 14, no. 11 (2025), p. 1973
Autor principal: Yin Binfeng
Otros Autores: Tan, Gang, Rashid, Muhammad, Liu, Jun, Bi Junjie
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3217731503
003 UK-CbPIL
022 |a 2304-8158 
024 7 |a 10.3390/foods14111973  |2 doi 
035 |a 3217731503 
045 2 |b d20250601  |b d20250614 
084 |a 231462  |2 nlm 
100 1 |a Yin Binfeng  |u School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; creatgang@163.com (G.T.); chemistwindow@gmail.com (R.M.); 18205073638@163.com (J.B.) 
245 1 |a AI-Powered Innovations in Food Safety from Farm to Fork 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Artificial intelligence is comprehensively transforming the food safety governance system by integrating modern technologies and building intelligent control systems that provide rapid solutions for the entire food supply chain from farm to fork. This article systematically reviews the core applications of AI in the orbit of food safety. First, in the production and quality control of primary food sources, the integration of spectral data with AI efficiently identifies pest and disease, food spoilage, and pesticide and veterinary drug residues. Secondly, during food processing, sensors combined with machine learning algorithms are utilized to ensure regulatory compliance and monitor production parameters. AI also works together with blockchain to build an immutable and end-point traceability system. Furthermore, multi-source data fusion can provide personalized nutrition and dietary recommendations. The integration of AI technologies with traditional food detection methods has significantly improved the accuracy and sensitivity of food analytical methods. Finally, in the future, to address the increasing food safety issues, Food Industry 4.0 will expand the application of AI with lightweight edge computing, multi-modal large models, and global data sharing to create a more intelligent, adaptive and flexible food safety system. 
653 |a Artificial intelligence 
653 |a Quality control 
653 |a Control systems 
653 |a Food contamination & poisoning 
653 |a Food processing industry 
653 |a Safety systems 
653 |a Industry 4.0 
653 |a Edge computing 
653 |a Nutrition 
653 |a Food spoilage 
653 |a Data integration 
653 |a Pesticide residues 
653 |a Food processing 
653 |a Machine learning 
653 |a Farms 
653 |a Food quality 
653 |a Innovations 
653 |a Food industry 
653 |a Food sources 
653 |a Spoilage 
653 |a Food chains 
653 |a Traditional foods 
653 |a Sensors 
653 |a Food systems 
653 |a Food supply 
653 |a Industrial applications 
653 |a Food safety 
653 |a Food contamination 
653 |a Safety 
653 |a Supply chains 
700 1 |a Tan, Gang  |u School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; creatgang@163.com (G.T.); chemistwindow@gmail.com (R.M.); 18205073638@163.com (J.B.) 
700 1 |a Rashid, Muhammad  |u School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; creatgang@163.com (G.T.); chemistwindow@gmail.com (R.M.); 18205073638@163.com (J.B.) 
700 1 |a Liu, Jun  |u Suqian Product Quality Supervision and Inspection Institute, Suqian 223800, China; ljljljlj1982@163.com 
700 1 |a Bi Junjie  |u School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; creatgang@163.com (G.T.); chemistwindow@gmail.com (R.M.); 18205073638@163.com (J.B.) 
773 0 |t Foods  |g vol. 14, no. 11 (2025), p. 1973 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3217731503/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3217731503/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3217731503/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch