Unveiling the Potential of Large Language Models in Transforming Chronic Disease Management: Mixed Methods Systematic Review

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Medical Internet Research vol. 27 (2025), p. e70535
Autor principal: Li, Caixia
Otros Autores: Zhao, Yina, Bai, Yang, Zhao, Baoquan, Tola, Yetunde Oluwafunmilayo, Chan, Carmen WH, Zhang, Meifen, Fu, Xia
Publicado:
Gunther Eysenbach MD MPH, Associate Professor
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3222368885
003 UK-CbPIL
022 |a 1438-8871 
024 7 |a 10.2196/70535  |2 doi 
035 |a 3222368885 
045 2 |b d20250101  |b d20251231 
100 1 |a Li, Caixia 
245 1 |a Unveiling the Potential of Large Language Models in Transforming Chronic Disease Management: Mixed Methods Systematic Review 
260 |b Gunther Eysenbach MD MPH, Associate Professor  |c 2025 
513 |a Journal Article 
520 3 |a Background:Chronic diseases are a major global health burden, accounting for nearly three-quarters of the deaths worldwide. Large language models (LLMs) are advanced artificial intelligence systems with transformative potential to optimize chronic disease management; however, robust evidence is lacking.Objective:This review aims to synthesize evidence on the feasibility, opportunities, and challenges of LLMs across the disease management spectrum, from prevention to screening, diagnosis, treatment, and long-term care.Methods:Following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines, 11 databases (Cochrane Central Register of Controlled Trials, CINAHL, Embase, IEEE Xplore, MEDLINE via Ovid, ProQuest Health & Medicine Collection, ScienceDirect, Scopus, Web of Science Core Collection, China National Knowledge Internet, and SinoMed) were searched on April 17, 2024. Intervention and simulation studies that examined LLMs in the management of chronic diseases were included. The methodological quality of the included studies was evaluated using a rating rubric designed for simulation-based research and the risk of bias in nonrandomized studies of interventions tool for quasi-experimental studies. Narrative analysis with descriptive figures was used to synthesize the study findings. Random-effects meta-analyses were conducted to assess the pooled effect estimates of the feasibility of LLMs in chronic disease management.Results:A total of 20 studies examined general-purpose (n=17) and retrieval-augmented generation-enhanced LLMs (n=3) for the management of chronic diseases, including cancer, cardiovascular diseases, and metabolic disorders. LLMs demonstrated feasibility across the chronic disease management spectrum by generating relevant, comprehensible, and accurate health recommendations (pooled accurate rate 71%, 95% CI 0.59-0.83; I2=88.32%) with retrieval-augmented generation-enhanced LLMs having higher accuracy rates compared to general-purpose LLMs (odds ratio 2.89, 95% CI 1.83-4.58; I2=54.45%). LLMs facilitated equitable information access; increased patient awareness regarding ailments, preventive measures, and treatment options; and promoted self-management behaviors in lifestyle modification and symptom coping. Additionally, LLMs facilitate compassionate emotional support, social connections, and health care resources to improve the health outcomes of chronic diseases. However, LLMs face challenges in addressing privacy, language, and cultural issues; undertaking advanced tasks, including diagnosis, medication, and comorbidity management; and generating personalized regimens with real-time adjustments and multiple modalities.Conclusions:LLMs have demonstrated the potential to transform chronic disease management at the individual, social, and health care levels; however, their direct application in clinical settings is still in its infancy. A multifaceted approach that incorporates robust data security, domain-specific model fine-tuning, multimodal data integration, and wearables is crucial for the evolution of LLMs into invaluable adjuncts for health care professionals to transform chronic disease management.Trial Registration:PROSPERO CRD42024545412; https://www.crd.york.ac.uk/PROSPERO/view/CRD42024545412 
653 |a Language 
653 |a Intervention 
653 |a Diabetes 
653 |a Databases 
653 |a Datasets 
653 |a Prevention programs 
653 |a Health promotion 
653 |a Medical diagnosis 
653 |a Coping 
653 |a Activities of daily living 
653 |a Chronic illnesses 
653 |a Medical libraries 
653 |a Disease management 
653 |a Feasibility 
653 |a Health care expenditures 
653 |a Behavior modification 
653 |a Global health 
653 |a Chatbots 
653 |a Augmentation 
653 |a Artificial intelligence 
653 |a Patients 
653 |a Clinical outcomes 
653 |a Systematic review 
653 |a Drugs 
653 |a Multimedia 
653 |a Connectedness 
653 |a Cancer 
653 |a Cardiovascular disease 
653 |a Medical screening 
653 |a Cardiovascular diseases 
653 |a Emotional support 
653 |a Medical personnel 
653 |a Sympathy 
653 |a Privacy 
653 |a Respiratory diseases 
653 |a Large language models 
653 |a Comorbidity 
653 |a Long term health care 
653 |a Meta-analysis 
653 |a Management 
653 |a Models 
653 |a Disease 
653 |a Simulation 
653 |a Quasi-experimental methods 
653 |a Registration 
653 |a Deaths 
653 |a Disease prevention 
653 |a Quality 
653 |a Health services 
653 |a Internet 
653 |a Medicine 
653 |a Treatment methods 
653 |a Disorders 
653 |a Medical treatment 
653 |a Adjuncts 
653 |a Language modeling 
653 |a Health care 
700 1 |a Zhao, Yina 
700 1 |a Bai, Yang 
700 1 |a Zhao, Baoquan 
700 1 |a Tola, Yetunde Oluwafunmilayo 
700 1 |a Chan, Carmen WH 
700 1 |a Zhang, Meifen 
700 1 |a Fu, Xia 
773 0 |t Journal of Medical Internet Research  |g vol. 27 (2025), p. e70535 
786 0 |d ProQuest  |t Library Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3222368885/abstract/embedded/Y2VX53961LHR7RE6?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3222368885/fulltextwithgraphics/embedded/Y2VX53961LHR7RE6?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3222368885/fulltextPDF/embedded/Y2VX53961LHR7RE6?source=fedsrch