Artificial Intelligence-Driven Physical Simulation and Animation Generation in Computer Graphics
Guardado en:
| Publicado en: | International Journal of Advanced Computer Science and Applications vol. 16, no. 5 (2025) |
|---|---|
| Autor principal: | |
| Publicado: |
Science and Information (SAI) Organization Limited
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | This study explores an expression synthesis algorithm anchored in Generative Adversarial Networks (GAN) with attention mechanisms, achieving enhanced authenticity in facial expression generation. Evaluated on the MUG and Oulu-CASIA datasets, our method synthesizes six expressions with superior clarity (96.63±0.26 confidence for neutral expressions) and smoothness (SSIM >0.92 for video frames), outperforming StarGAN and ExprGAN in detail preservation and temporal stability. The proposed model demonstrates significant advantages in realism and identity retention, validated through quantitative metrics and comparative experiments. |
|---|---|
| ISSN: | 2158-107X 2156-5570 |
| DOI: | 10.14569/IJACSA.2025.0160568 |
| Fuente: | Advanced Technologies & Aerospace Database |