Artificial Intelligence-Driven Physical Simulation and Animation Generation in Computer Graphics

Guardado en:
Detalles Bibliográficos
Publicado en:International Journal of Advanced Computer Science and Applications vol. 16, no. 5 (2025)
Autor principal: PDF
Publicado:
Science and Information (SAI) Organization Limited
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3222641077
003 UK-CbPIL
022 |a 2158-107X 
022 |a 2156-5570 
024 7 |a 10.14569/IJACSA.2025.0160568  |2 doi 
035 |a 3222641077 
045 2 |b d20250101  |b d20251231 
100 1 |a PDF 
245 1 |a Artificial Intelligence-Driven Physical Simulation and Animation Generation in Computer Graphics 
260 |b Science and Information (SAI) Organization Limited  |c 2025 
513 |a Journal Article 
520 3 |a This study explores an expression synthesis algorithm anchored in Generative Adversarial Networks (GAN) with attention mechanisms, achieving enhanced authenticity in facial expression generation. Evaluated on the MUG and Oulu-CASIA datasets, our method synthesizes six expressions with superior clarity (96.63±0.26 confidence for neutral expressions) and smoothness (SSIM >0.92 for video frames), outperforming StarGAN and ExprGAN in detail preservation and temporal stability. The proposed model demonstrates significant advantages in realism and identity retention, validated through quantitative metrics and comparative experiments. 
653 |a Smoothness 
653 |a Animation 
653 |a Artificial intelligence 
653 |a Physical simulation 
653 |a Computer graphics 
653 |a Generative adversarial networks 
653 |a Deep learning 
653 |a Computer science 
653 |a Realism 
653 |a Neural networks 
653 |a Quantitative analysis 
773 0 |t International Journal of Advanced Computer Science and Applications  |g vol. 16, no. 5 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3222641077/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3222641077/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch